Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
J Leukoc Biol ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38626175

ABSTRACT

Total glucoside of paeonia (TGP) and its main active ingredient paeoniflorin, extracted from the Chinese herb Paeonia Lactiflora Pallas, exhibit potent immunomodulatory effects. TGP has been shown to inhibit inflammatory responses and disease progression in experimental models of multiple autoimmune diseases (AIDs), including rheumatoid arthritis, systemic lupus erythematosus, Sjogren's syndrome, psoriasis, etc. TGP shows broad immunomodulatory effects on many immune cells such as T cells, macrophages, and dendritic cells, by regulating their activation, proliferation, differentiation, and production of effector molecules. Mechanistically, TGP modulates intracellular signaling transductions including JAK/STAT, NF-κB, MAPK, and PI3K/AKT/mTOR pathways. Moreover, TGP has been applied in the clinical treatment of various AIDs with satisfactory therapeutic outcomes and minor side effects. Thus, available studies have demonstrated that TGP and its bioactive constituents exhibit anti-inflammatory and immunomodulatory functions and may have extensive applications in the treatment of AIDs.

2.
Int J Biol Macromol ; 267(Pt 1): 131483, 2024 May.
Article in English | MEDLINE | ID: mdl-38599426

ABSTRACT

Probiotics are susceptible to diverse conditions during processing, storage, and digestion. Here, shellac (SC), sodium alginate (SA), coconut oil (CO), soybean oil (SO), and trehalose (AL) were used to prepare microcapsules aiming to improve the survival of Lactiplantibacillus plantarum KLDS1.0318 during freeze-drying, storage process, and gastrointestinal digestion. The results showed that for SA/AL/SC/CO and SA/AL/SC/SO, the survival loss decreased by 51.2 % and 51.0 % after a freeze-drying process compared with microcapsules embedded by SA; the viable bacteria count loss decreased by 4.36 and 4.24 log CFU/mL compared with free cell (CON) during storage for 28 d under 33%RH at 25 °C, respectively; while for simulating digestion in vitro, the survival loss decreased by 3.05 and 2.70 log CFU/mL, 0.63 and 0.55 log CFU/mL after digestion at simulated gastric fluid for 120 min and small intestine fluid for 180 min, respectively (P < 0.05). After microcapsules were added to fermented dairy stored at 4 °C for 21 d, the viable bacteria count of SA/AL/SC/CO and SA/AL/SC/SO significantly increased by 2.10 and 1.70 log CFU/mL compared with CON, respectively (P < 0.05). In conclusion, the current study indicated that shellac-based probiotic microcapsules have superior potential to protect and deliver probiotics in food systems.


Subject(s)
Alginates , Capsules , Digestion , Freeze Drying , Microbial Viability , Probiotics , Alginates/chemistry , Microbial Viability/drug effects , Gastrointestinal Tract/microbiology , Trehalose/chemistry , Soybean Oil/chemistry , Coconut Oil/chemistry
3.
Eur J Med Res ; 29(1): 179, 2024 Mar 17.
Article in English | MEDLINE | ID: mdl-38494480

ABSTRACT

OBJECTIVE: We aimed to evaluate the ability of Adult Comorbidity Evaluation 27 (ACE-27) to predict perioperative outcomes and survival in elderly women with advanced epithelial ovarian cancer (AEOC) undergoing cytoreductive surgery. METHODS: We collected patients with AEOC in our hospital between January 1, 2012 and January 1, 2021. Patients younger than 65 years old or those with non-epithelial ovarian cancer were excluded. ACE-27 was applied retrospectively to assess comorbidities in the selected patients, who were then classified into two groups based on their ACE-27 scores: low ACE-27 score group (none to mild) and high ACE-27 score group (moderate to severe). RESULTS: A total of 222 elderly women with AEOC were included, of whom 164 patients accepted debulking surgery. Among those who have undergone surgery, Clavien-Dindo grade III + perioperative complications or unintended intensive care unit (ICU) admission occurred more often in patients of high ACE-27 score group, with statistically significant difference (odds ratio [OR]: 4.21, 95% confidence interval [CI], 1.28-14.35, p = 0.018). Further stratified analyses by age, BMI, FIGO stage and pathology also prove that OS of patients graded severe was shorter than patients graded none to moderate in cohort of age < 70, BMI < 25 kg/m2, FIGO III stage and pathology of serous, respectively. Kaplan-Meier survival curves analyzed by log-rank test showed that the overall survival (OS) of patients with severe comorbidities were shorter than with none to moderate (HR 3.25, 95%CI 1.55-6.79, p = 0.002). CONCLUSIONS: Our findings demonstrate the ability of ACE-27 to predict grade III + perioperative complications or unintended ICU admission and survival in elderly patients with AEOC. This highlights the possibility for ACE-27 to play an instrumental role in identifying AEOC patients who are more susceptible to adverse surgical outcomes and have a poor survival rate and assisting in decisions regarding treatment.


Subject(s)
Ovarian Neoplasms , Adult , Humans , Female , Aged , Carcinoma, Ovarian Epithelial/surgery , Carcinoma, Ovarian Epithelial/pathology , Ovarian Neoplasms/surgery , Ovarian Neoplasms/pathology , Cytoreduction Surgical Procedures , Retrospective Studies , Comorbidity , Treatment Outcome
4.
Neural Netw ; 172: 106142, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38281364

ABSTRACT

Conventional unsupervised domain adaptation (UDA) methods often presuppose the existence of labeled source domain samples while adapting the source model to the target domain. Nevertheless, this premise is not always tenable in the context of source-free UDA (SFUDA) attributed to data privacy considerations. Some existing methods address this challenging SFUDA problem by self-supervised learning. But inaccurate pseudo-labels are always unavoidable to degrade the performance of the target model among these methods. Therefore, we propose a promising SFUDA method, namely Generation, Division and Training (GDT) which aims to promote the reliability of pseudo-labels for self-supervised learning and encourage similar features to have closer predictions than dissimilar ones by contrastive learning. Specifically in our GDT method, we first refine pseudo-labels with deep clustering for target samples and then split them into reliable samples and unreliable samples. After that, we adopt self-supervised learning and information maximization for reliable samples training. And for unreliable samples, we conduct contrastive learning via the perspective of similarity and disparity to attract similar samples and repulse dissimilar samples, which helps pull the similar features closed and push the dissimilar features away, leading to efficient feature clustering. Thorough experimentation on three benchmark datasets substantiates the excellence of our proposed approach.


Subject(s)
Benchmarking , Privacy , Reproducibility of Results , Cluster Analysis , Empirical Research
5.
Reprod Sci ; 31(1): 107-121, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37648942

ABSTRACT

Cervical cancer is a common gynecological oncology. Growing evidence indicates hypoxia plays an important role in tumor progression and immunity. However, no study has examined the hypoxia landscape in cervical cancer. In this study, using hierarchical clustering, we identified three hypoxia subtypes in cervical cancer samples from The Cancer Genome Atlas dataset according to formerly described hypoxia-related genes. The overall survival time, hypoxic features, genomics, and immunological characteristics of these subtypes existed distinct differences. We also created a hypoxia score by principle component analysis for dimension reduction. The hypoxiaScore was an effective prognostic biomarker validated by GSE44001 and was associated with immunotherapy response. Furthermore, combined with single-cell RNA-sequence (scRNA-seq) and experiments, S100A2 was identified as an immunosuppressive factor induced by hypoxia and regulated expression of PD-L1. S100A2 also served as an oncogene promoting the proliferation and migration of cervical cancer cells. These findings depicted a new hypoxia-based classification and identified S100A2 as a potential therapeutic target for cervical cancer, thereby advancing the understanding of immunotherapy resistance mechanisms and cervical cancer genetic markers.


Subject(s)
Uterine Cervical Neoplasms , Female , Humans , Uterine Cervical Neoplasms/genetics , S100 Proteins/genetics , S100 Proteins/metabolism , Multiomics , Hypoxia/genetics , Prognosis , Tumor Microenvironment , Chemotactic Factors/genetics , Chemotactic Factors/metabolism
6.
Chemistry ; 30(12): e202303930, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38117253

ABSTRACT

Herein, we developed a one-pot procedure to synthesize novel fulvene-[b]-fused BODIPYs from α-(2-alkynylphenyl)-pyrrole and acylpyrrole, using 5-exo cyclization as the key transformation. Compared to benzene-[b]-fused BODIPYs, although they have similar chemical compositions, their structures and properties significantly differ from each other, which can be attributed to the less aromaticity of the fulvene linker than benzene. Notably, fulvene-[b]-fused BODIPY 1 b exhibits helical-twisted core skeleton, intensified red-shifted absorption, and peak fluorescence. In addition, the pathway of this one-pot reaction and the mechanism of POCl3 mediated 5-exo cyclization have been proposed by a combining experimental and computational study.

7.
Org Lett ; 25(48): 8553-8557, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38015797

ABSTRACT

A novel polycyclic π-system (1) featuring both a pleiaheptalene framework (a three-fused heptagon system) and nitrogen-boron-nitrogen (NBN) unit was constructed by electrophilic borylation. A combined experimental and computational study demonstrated that 1 has a highly twisted π-backbone with approximate C2 symmetry, which can undergo conformational isomerization at room temperature in contrast to pleiaheptalene. It was also found that 1 can bind the fluoride ion in the solution, which induces changes in the absorption and emission spectra.

8.
Chem Biol Interact ; 384: 110712, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37716418

ABSTRACT

Cervical cancer is one of the most leading causes of cancer death worldwide, and ferroptosis is implicated in the progression of cervical cancer. Cornichon family AMPA receptor auxiliary protein 4 (CNIH4) is involved in the progression of various human cancers; however, its function in cervical cancer remains unclear. The present study aims to investigate the role and mechanism of CNIH4 in cervical cancer using gain- and loss-of-function studies in vitro. SiHa and CaSki cells were infected with lentiviral vectors to manipulate the expression of CNIH4 in vitro, and cell viability, migration, invasion as well as ferroptosis were evaluated. Transcriptome sequencing analysis was performed to further validate the mechanism through which CNIH4 regulated the progression of cervical cancer. The expression of CNIH4 was upregulated in human cervical cancer tissues and cells, and strongly correlated with the decreases in overall survival and disease free survival rates of cervical cancer patients. CNIH4 silence inhibited, while CNIH4 overexpression facilitated the survival of human cervical cancer cells. Mechanistically, CNIH4 elevated solute carrier family 7 member 11 (SLC7A11)-mediated cystine import, and subsequently increased intracellular glutathione synthesis and glutathione peroxidase 4 activity, thereby inhibiting ferroptosis of human cervical cancer cells. SLC7A11 silence significantly abolished CNIH4-mediated inhibition of ferroptosis in cervical cancer cells in vitro. Our study for the first time reveals that CNIH4 inhibits ferroptosis of human cervical cancer cells through upregulating SLC7A11, defining CNIH4 as an attractive therapeutic and prognostic target for cervical cancer.

9.
Cell Death Dis ; 14(5): 325, 2023 05 13.
Article in English | MEDLINE | ID: mdl-37179386

ABSTRACT

The common pathogenesis of Alzheimer's disease (AD) and Parkinson's disease (PD) has been supported by biochemical, genetic and molecular evidence. Mitochondrial dysfunction is considered to be the common pathology in early AD and PD. The physiological regulation of APP and α-synuclein on mitochondria remains unclear, let alone whether they share common regulatory mechanisms affecting the development of neurodegenerative diseases. By studying gene knockout rats, the commonality of physiological APP and α-synuclein in maintaining mitochondrial function through calcium homeostasis regulation was revealed, which was critical in inhibiting hippocampal degeneration in young rats. APP and α-synuclein both control hippocampal mitochondrial calcium intake and outflow. In the mitochondrial calcium influx regulation, APP and α-synuclein are located on the mitochondrial-associated endoplasmic reticulum membrane (MAM) and converge to regulate the IP3R1-Grp75-VDAC2 axis. Mitochondrial calcium outflow is redundantly promoted by both α-synuclein and APP. Loss of APP or SNCA leads to mitochondrial calcium overload, thus enhancing aerobic respiration and ER stress, and ultimately causing excessive apoptosis in the hippocampus and spatial memory impairment in young rats. Based on this study, we believe that the physiological function impairment of APP and SNCA is the early core pathology to induce mitochondrial dysfunction at the early stage of AD and PD, while the IP3R1-Grp75-VDAC2 axis might be the common drug target of these two diseases.


Subject(s)
Alzheimer Disease , Parkinson Disease , Animals , Rats , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Alzheimer Disease/genetics , Calcium , Hippocampus/metabolism , Mitochondria/metabolism , Parkinson Disease/genetics , Amyloid beta-Protein Precursor
10.
Int J Biol Macromol ; 236: 124042, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36924874

ABSTRACT

The effect of sodium alginate (SA) coating on the oil content and quality of fries was evaluated, and the inhibitory mechanism of SA on oil absorption was analyzed based on the water replacement theory. Compared to uncoated samples, the penetrated surface oil (PSO), structure oil (STO), and total oil (TO) contents, a*, and b* of coated fries decreased, whereas moisture content, L* and hardness increased with no significant difference revealed by sensory evaluation of all samples. The water contact angle of the films correlated negatively with the water content and hardness of the fries. In contrast, it correlated positively with PSO, STO, and TO contents. The TO content of fries with 1 % SA film which had a compact microstructure, was the lowest, reduced by 52.5 % compared to the control sample. SA coating reduces the pores and roughness on the fries' surface, which inhibits the oil from penetrating into the samples. SA coating decreased the T21, T22, and pores of the starch, and increased the P2b, P21, relative crystallinity, and ΔH significantly (P < 0.05). Therefore, SA coating inhibits the oil absorption in fries by reducing water evaporation which is attributed to the increase in double helices and crystallinity of starch.


Subject(s)
Alginates , Edible Films , Alginates/chemistry , Water/chemistry , Chemical Phenomena , Starch
11.
IUBMB Life ; 75(7): 609-623, 2023 07.
Article in English | MEDLINE | ID: mdl-36809563

ABSTRACT

Cervical cancer is one of the most common female malignant tumors, with typical cancer metabolism characteristics of increased glycolysis flux and lactate accumulation. 2-Deoxy-D-glucose (2-DG) is a glycolysis inhibitor that acts on hexokinase, the first rate-limiting enzyme in the glycolysis pathway. In this research, we demonstrated that 2-DG effectively reduced glycolysis and impaired mitochondrial function in cervical cancer cell lines HeLa and SiHa. Cell function experiments revealed that 2-DG significantly inhibited cell growth, migration, and invasion, and induced G0/G1 phase arrest at non-cytotoxic concentrations. In addition, we found that 2-DG down-regulated Wingless-type (Wnt)/ß-catenin signaling. Mechanistically, 2-DG accelerated the degradation of ß-catenin protein, which resulted in the decrease of ß-catenin expression in both nucleus and cytoplasm. The Wnt agonist lithium chloride and ß-catenin overexpression vector could partially reverse the inhibition of malignant phenotype by 2-DG. These data suggested that 2-DG exerted its anti-cancer effects on cervical cancer by co-targeting glycolysis and Wnt/ß-catenin signaling. As expected, the combination of 2-DG and Wnt inhibitor synergistically inhibited cell growth. It is noteworthy that, down-regulation of Wnt/ß-catenin signaling also inhibited glycolysis, indicating a similar positive feedback regulation between glycolysis and Wnt/ß-catenin signaling. In conclusion, we investigated the molecular mechanism by which 2-DG inhibits the progression of cervical cancer in vitro, elucidated the interregulation between glycolysis and Wnt/ß-catenin signaling, and preliminarily explored the effect of combined targeting of glycolysis and Wnt/ß-catenin signaling on cell proliferation, which provides more possibilities for the formulation of subsequent clinical treatment strategies.


Subject(s)
Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/metabolism , beta Catenin/genetics , beta Catenin/metabolism , Cell Line, Tumor , Glucose/pharmacology , Wnt Signaling Pathway/genetics , Glycolysis , Deoxyglucose/pharmacology , Cell Proliferation , Cell Movement , Gene Expression Regulation, Neoplastic
12.
Foods ; 11(16)2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36010509

ABSTRACT

The inhibitory effect of guava leaf polyphenols (GLP) on advanced glycation end products (AGEs) of frozen chicken meatballs (−18 °C) and its possible inhibitory mechanism was investigated. Compared with control samples after freezing for 6 months, acidic value (AV), lipid peroxides, thiobarbituric acid reactive substance (TBARS), A294, A420, glyoxal (GO), Nε-carboxymethyl-lysine (CML), pentosidine, and fluorescent AGEs of chicken meatballs with GLP decreased by 11.1%, 22.3%, 19.5%, 4.30%, 8.66%, 8.27%, 4.80%, 20.5%, and 7.68%, respectively; while free sulfhydryl groups the content increased by 4.90%. Meanwhile, there was no significant difference between meatballs with GLP and TP in AV, A294, GO, and CML (p > 0.05). Correlation analysis indicated that GO, CML, pentosidine, and fluorescent AGEs positively correlated with AV, TBARS, A294, and A420, while GO, CML, pentosidine, and fluorescent AGEs negatively correlated with free sulfhydryl groups. These results manifested GLP could inhibit AGEs formation by inhibiting lipid oxidation, protein oxidation, and Maillard reaction. The possible inhibitory mechanism of GLP on the AGEs included scavenging free radicals, capturing dicarbonyl compounds, forming polyphenol−protein compounds, and reducing the formation of glucose. Therefore, the work demonstrated that the addition of plant polyphenols may be a promising method to inhibit AGEs formation in food.

13.
Int J Biol Macromol ; 216: 361-373, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35803406

ABSTRACT

A pH-sensitive intelligent indicator film was developed and used for monitoring dynamic changes in chicken freshness at 4 °C and 25 °C by immobilizing 0.2 %-1.0 % purple sweet potato peel extracts (PPE) with sodium alginate (SA). The films presented a wide range of colors from red-pink to green-yellow at 2-13, and the films with less PPE were more sensitive to ammonia. The color of films with 0.6 % PPE changed from pink to blue when used in monitoring chicken freshness at 4 °C (5 d) and 25 °C (60 h), which corresponded to changes in total volatile base nitrogen from 5.35 (5.35) mg/100 g to 16.2 (19.9) mg/100 g. Scanning electron microscopy and X-ray diffraction revealed that PPE improved the compactness and crystallinity of SA films, while Fourier transform infrared spectroscopy revealed hydrogen bonds between SA and PPE. Compared to SA films, the water vapor and light barrier abilities of films with 0.6 % were significantly improved (P < 0.05), there was no significant effect on tensile strength (P > 0.05), and the elongation of 0.6 % PPE films (P < 0.05) was decreased. Thus, PPE can serve as an excellent indicator of intelligent films for monitoring the freshness of meat products.


Subject(s)
Food Packaging , Ipomoea batatas , Alginates , Animals , Anthocyanins/chemistry , Chickens , Food Packaging/methods , Hydrogen-Ion Concentration
14.
Biomaterials ; 286: 121566, 2022 07.
Article in English | MEDLINE | ID: mdl-35633590

ABSTRACT

3D printing has emerged as a pivotal fabrication technique for preparing scaffolds for engineering tissues and tissue models. Among different 3D printing platforms, photo-crosslinking-based 3D printing techniques like digital light processing and stereolithography have become most popular as they enable the construction of complex architecture with improved spatial resolution, reliable pattern fidelity, and high printing speed. In addition, by selecting appropriate ink combinations or modulating the photo-crosslinking printing parameters (e.g., the types or concentrations of photoinitiators and crosslinkers, light exposure time or intensity, as well as the 3D printing techniques used), the structures and properties (e.g., swelling and mechanical properties) of the resultant printed scaffolds can be finely tailored to meet the practical application requirements. Here, recent advances on the promising development of photo-crosslinkable materials for 3D printing with a focus on their biomedical applications for repairing damaged organs and developing in vitro tissue models are reviewed. Firstly, an overview of commonly used photo-crosslinkable materials, as well as insights on how the printing outcomes of these materials can be improved are provided. Then, the diverse regulation strategies of the photo-polymerization process and the 3D printing parameters to improve the performances of the printed structures are summarized. The existing challenges and future directions are finally discussed from the technical and application perspectives of photo-crosslinking-based 3D printing.


Subject(s)
Tissue Engineering , Tissue Scaffolds , Polymerization , Printing, Three-Dimensional , Tissue Engineering/methods , Tissue Scaffolds/chemistry
15.
Mol Genet Genomics ; 297(1): 63-74, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34779936

ABSTRACT

The transformation of plants from juveniles to adults is a key process in plant growth and development, and the main regulatory factors are miR156 and SQUAMOSA promoter binding protein-like (SPL) transcription factors. Lilium is an ornamental bulb, but it has a long maturation time. In this experiment, Lilium bulbs were subjected to a temperature treatment of 15 °C for 4 weeks to initiate vegetative phase change. Transmission electron microscopy indicated the cell wall of bud core tissue undergoing vegetative phase change became thinner, the starch grains were reduced, and the growth of the juvenile stage was accelerated. The key transcription factors LbrSPL9 and LbrSPL15 were cloned, and the phylogenetic analysis showed they possessed high homology with other plant SPLs. Subcellular localization and transcription activation experiments confirmed LbrSPL9 and LbrSPL15 were mainly located in the nucleus and exhibited transcriptional activity. The results of in situ hybridization showed the expression levels of LbrSPL9 and LbrSPL15 were increased after temperature change treatment. The functional verification experiment of the transgenic plants confirmed that the overexpression of LbrSPL9 and LbrSPL15 could shorten maturation time. These findings help elucidate the regulatory mechanisms of phase transition in Lilium and provide a reference for breeding research in other bulbous flowers.


Subject(s)
Lilium/genetics , Transcription Factors/genetics , Transcription Factors/physiology , Arabidopsis/genetics , Arabidopsis/growth & development , Flowers/genetics , Flowers/metabolism , Gene Expression Regulation, Developmental/genetics , Gene Expression Regulation, Plant , Genes, Plant/physiology , Lilium/classification , Phenotype , Plant Development , Plant Proteins/genetics , Plant Proteins/physiology , Plant Roots/genetics , Plants, Genetically Modified , Nicotiana/genetics , Nicotiana/growth & development
16.
Angew Chem Int Ed Engl ; 60(45): 24124-24130, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34519417

ABSTRACT

The synthesis of new carbazole-fused polycyclic aromatics with interesting geometry and useful properties was explored using Scholl reactions. As found from the Scholl reactions of substrates having two carbazole units linked at different positions through o-phenylene, oxidative coupling of carbazole units occurred in a regioselective manner with new carbon-carbon bonds preferably formed at C3 and C4 in N-alkyl carbazoles. A new N-containing aromatic bowl was characterized by single-crystal X-ray crystallography, and new p-type organic semiconductors exhibited field effect mobility of up to 0.070 cm2 V-1 s-1 in solution-processed thin-film transistors.

17.
Angew Chem Int Ed Engl ; 60(39): 21289-21294, 2021 09 20.
Article in English | MEDLINE | ID: mdl-34343393

ABSTRACT

Replacement of the allylic C=C-C unit with a N-B-N unit at each of the three zigzag edges of [4]triangulene gives rise to B3 N6 -[4]triangulene, which is envisioned to represent a key structural unit of a new hypothetical boron carbon nitride (BC4 N). A tert-butylated B3 N6 -[4]triangulene has been successfully synthesized by three-fold nitrogen-directed borylation, and the X-ray crystallographic analysis indicates that its slightly bent triangular polycyclic framework can be viewed as a 1,3,5-triphenylbenzene connected by three 4π-electron N-B-N units. The HN-B-NH moiety provides a dual hydrogen-bond donor, which forms H-bonds with halide or carboxylate anions in solution, and form DD-AA hydrogen-bond arrays with 2,7-di(tert-butyl)-pyrene-4,5,9,10-tetraone in the co-crystal. Moreover, the blue fluorescence of B3 N6 -[4]triangulene in solution is responsive to binding p-nitrobenzoate anion through hydrogen bonds.

18.
Food Chem ; 362: 130222, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34090040

ABSTRACT

The synergistic effect of pH and heating on the structure, aggregation behaviour and gel properties of myofibrillar protein (MP) in mirror carp (Cyprinus carpio) was evaluated. The surface hydrophobicity of the control at pH 5.0 (143.6 ± 0.3 µg) was significantly higher than that of other samples (P < 0.05). Under the same pH conditions, the decrease in total sulfhydryl content of all samples during the heating process demonstrated that covalent/non-covalent cross-linking occurred between proteins due to heat input. Moreover, the decrease in solubility and the increase in turbidity of all samples verified the fact of MP aggregation, and the changes in the elasticity index (EI) and macroscopic viscosity index (MVI) also indicated a decrease in MP fluidity upon heating treatment. Therefore, the aggregation of MP was affected by pH and heating, and the optimal three-dimensional network structure and gel properties could be formed at pH 6.0 and above 70 °C.


Subject(s)
Carps , Fish Proteins/chemistry , Gels/chemistry , Muscle Proteins/chemistry , Animals , Heating , Hot Temperature , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Solubility , Sulfhydryl Compounds/analysis , Sulfhydryl Compounds/chemistry , Viscosity
19.
Microb Pathog ; 154: 104856, 2021 May.
Article in English | MEDLINE | ID: mdl-33766633

ABSTRACT

Enterohaemorrhagic Escherichia coli (EHEC) is a prominent foodborne pathogen that causes infectious intestinal diarrhoea. Lactobacillus is a recognized probiotic that inhibits intestinal pathogens and maintains the balance of the intestinal flora. The purpose of this study was to investigate the regulatory effects of three Lactobacillus strains, L. johnsonii, L. plantarum, and L. rhamnosus, on the intestinal flora of EHEC-infected mice. The initial weight and diarrhoea index of the mice were recorded. After 21 days, the faeces of the mice were subjected to 16S rDNA high-throughput sequencing. The diarrhoea index of mice treated with Lactobacillus improved, their body weight continued to rise, and their liver index gradually decreased. The α diversity analysis showed that the intestinal flora diversity and abundance were lower in mice infected with EHEC than in healthy mice. L. plantarum, L. johnsonii, and L. rhamnosus significantly improved the diversity of the flora species. In terms of flora composition, the three main phyla present were Bacteroidetes, Firmicutes, and Proteobacteria. The abundance of these three phyla was reduced to 93.81% after infection and restored to over 96.30% after treatment. At the genus level, Lactobacillus reduced the abundance of Bacteroides, Helicobacter pylori, and Shigella, while increasing the abundance of butyric acid-producing bacteria and Lactobacillus. Finally, a heat map and non-metric multidimensional scaling analysis showed that the intestinal flora structures in the L. johnsonii, L. plantarum, and L. rhamnosus treatment groups were closest to those of healthy mice. In conclusion, L. johnsonii, L. plantarum, and L. rhamnosus regulated and improved the structure of intestinal flora and relieved diarrhoea caused by EHEC infection.


Subject(s)
Enterohemorrhagic Escherichia coli , Gastrointestinal Microbiome , Probiotics , Animals , Diarrhea/therapy , Lactobacillus , Mice
20.
Angew Chem Int Ed Engl ; 59(24): 9678-9683, 2020 Jun 08.
Article in English | MEDLINE | ID: mdl-32162418

ABSTRACT

Indolo[3,2-b]carbazole presents a π-skeleton with a remarkable electronic structure and interesting potential applications. It is, however, also associated with ambiguity and controversy. Herein, new derivatives of indolo[3,2-b]carbazole are reported and they have enabled a comprehensive study on the electronic structure of indolo[3,2-b]carbazole and the development of a new n-type organic semiconductor. Experimental and computational studies show that indolo[3,2-b]carbazole has a largely localized p-benzoquinonediimine moiety and significant antiaromaticity. When substituted with (4-silylethynyl)phenyl groups, the indolo[3,2-b]carbazole exhibits one-dimensional π-π stacking and functions as an n-type organic semiconductor in solution-processed field effect transistors.

SELECTION OF CITATIONS
SEARCH DETAIL
...