Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
ACS Nano ; 18(14): 10302-10311, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38537206

ABSTRACT

The electrochemical upcycling of nitrate (NO3-) to ammonia (NH3) holds promise for synergizing both wastewater treatment and NH3 synthesis. Efficient stripping of gaseous products (NH3, H2, and N2) from electrocatalysts is crucial for continuous and stable electrochemical reactions. This study evaluated a layered electrocatalyst structure using copper (Cu) dendrites to enable a high curvature and hydrophobicity and achieve a stratified liquid contact at the gas-liquid interface of the electrocatalyst layer. As such, gaseous product desorption or displacement from electrocatalysts was enhanced due to the separation of a wetted reaction zone and a nonwetted zone for gas transfer. Consequently, this electrocatalyst structure yielded a 2.9-fold boost in per-active-site activity compared with that with a low curvature and high hydrophilic counterpart. Moreover, a NH3 Faradaic efficiency of 90.9 ± 2.3% was achieved with nearly 100% NO3- conversion. This high-curvature hydrophobic Cu dendrite was further integrated with a gas-extraction membrane, which demonstrated a comparable NH3 yield from the real reverse osmosis retentate brine.

2.
ACS Appl Mater Interfaces ; 16(8): 10148-10157, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38363186

ABSTRACT

The COVID-19 pandemic sparked public health concerns about the transmission of airborne viruses. Current methods mainly capture pathogens without inactivation, leading to potential secondary pollution. Herein, we evaluated the inactivation performance of a model viral species (MS2) in simulated bioaerosol by an electromagnetically enhanced air filtration system under a 300 kHz electromagnetic induction field. A nonwoven fabric filter was coated with a 2D catalyst, MXene (Ti3C2Tx), at a coating density of 4.56 mg·cm-2 to absorb electromagnetic irradiation and produce local heating and electromagnetic field for microbial inactivation. The results showed that the MXene-coated air filter significantly enhanced the viral removal efficiency by achieving a log removal of 3.4 ± 0.15 under an electromagnetic power density of 369 W·cm-2. By contrast, the pristine filter without catalyst coating only garnered a log removal of 0.3 ± 0.04. Though the primary antimicrobial mechanism is the local heating as indicated by the elevated surface temperature of 72.2 ± 4 °C under the electromagnetic field, additional nonthermal effects (e.g., dielectrophoresis) on enhanced viral capture during electromagnetically enhanced filtration were investigated by COMSOL simulation to delineate the potential transmission trajectories of bioaerosol. The results provide unique insights into the mechanisms of pathogen control and thus promote alternative solutions for preventing the transmission of airborne pathogens.


Subject(s)
Nitrites , Pandemics , Transition Elements , Viruses , Humans , Air Microbiology , Respiratory Aerosols and Droplets , Filtration/methods , Electromagnetic Fields
3.
ACS Appl Mater Interfaces ; 15(24): 29149-29159, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37294711

ABSTRACT

MXenes exhibit excellent conductivity, tunable surface chemistry, and high surface area. Particularly, the surface reactivity of MXenes strongly depends on surface exposed atoms or terminated groups. This study examines three types of MXenes with oxygen, fluorine, and chlorine as respective terminal atoms and evaluates their electrosorption, desorption, and oxidative properties. Two perfluorocarboxylic acids (PFCAs), perfluorobutanoic acid (PFBA) and perfluorooctanoic acid (PFOA) are used as model persistent micropollutants for the tests. The experimental results reveal that O-terminated MXene achieves a significantly higher adsorption capacity of 215.9 mg·g-1 and an oxidation rate constant of 3.9 × 10-2 min-1 for PFOA compared to those with F and Cl terminations. Electrochemical oxidation of the two PFCAs (1 ppm) with an applied potential of +6 V in a 0.1 M Na2SO4 solution yields >99% removal in 3 h. Moreover, PFOA degrades about 20% faster than PFBA on O-terminated MXene. The density functional theory (DFT) calculations reveal that the O-terminated MXene surface yielded the highest PFOA and PFBA adsorption energy and the most favorable degradation pathway, suggesting the high potential of MXenes as highly reactive and adsorptive electrocatalysts for environmental remediation.

4.
Nanomaterials (Basel) ; 11(11)2021 Oct 31.
Article in English | MEDLINE | ID: mdl-34835687

ABSTRACT

The strain in hybrid van der Waals heterostructures, made of two distinct two-dimensional van der Waals materials, offers an interesting handle on their corresponding electronic band structure. Such strain can be engineered by changing the relative crystallographic orientation between the constitutive monolayers, notably, the angular misorientation, also known as the "twist angle". By combining angle-resolved photoemission spectroscopy with density functional theory calculations, we investigate here the band structure of the WS2/graphene heterobilayer for various twist angles. Despite the relatively weak coupling between WS2 and graphene, we demonstrate that the resulting strain quantitatively affects many electronic features of the WS2 monolayers, including the spin-orbit coupling strength. In particular, we show that the WS2 spin-orbit splitting of the valence band maximum at K can be tuned from 430 to 460 meV. Our findings open perspectives in controlling the band dispersion of van der Waals materials.

5.
Biotechniques ; 71(3): 465-472, 2021 09.
Article in English | MEDLINE | ID: mdl-34350779

ABSTRACT

Laboratory biosafety has become a core focus in biological analysis, owing to the frequent occurrence of laboratory-acquired infections caused by the leakage of pathogenic microorganisms. For this purpose, the authors developed a safe pretreatment device combining a sealing technique with a direct injection technique. In this study, several bacteria and viruses were used to validate the filtration effect of the invention. Data show that the new device can completely filter bacteria and that the filtration rates for hepatitis B virus and hepatitis C virus reached 94% and 96%, respectively. The results show that the new preparation device can effectively block these pathogens and can improve biological safety and provide powerful protection for technicians.


Subject(s)
Containment of Biohazards , Ultrafiltration , Hepacivirus , Hepatitis B virus , Laboratories
6.
Anal Bioanal Chem ; 413(25): 6225-6237, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34406463

ABSTRACT

The presence of reduced aminothiols, including homocysteine (Hcy), cysteine (Cys), cysteinyl-glycine (CG), and glutathione (GSH), is significantly increased in the pathological state. However, there have been no reports on the relationship between reduced aminothiols (Hcy, Cys, CG, and GSH) and different genders, ages, and drug combinations in human blood. The accurate quantification of these reduced thiols in biological fluids is important for monitoring some special pathological conditions of humans. However, the published methods typically not only require cumbersome and technically challenging processing procedures to ensure reliable measurements, but are also laborious and time-consuming, which may disturb the initial physiological balance and lead to inaccurate results. We developed a hollow fiber centrifugal ultrafiltration (HFCF-UF) method for sample preparation coupled with a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method and used it to determine four reduced aminothiols (Hcy, Cys, CG, and GSH) in human blood for the first time. A total of 96 clinical patients were enrolled in our study. The influence of different genders, ages, and drug combinations on the levels of four reduced thiols in human blood was also discussed by SPSS 24.0. The sample preparation was simplified to a single 5 min centrifugation step in a sealed system that did not disturb the physiological environment. The validation parameters for the methodological results were excellent. The procedure was successfully applied to monitoring the concentrations of four reduced aminothiols (Hcy, Cys, CG, and GSH) in 96 clinical blood samples. There were no significant differences in Hcy, Cys, CG, or GSH for the different genders, ages, or combinations with methotrexate or vancomycin (P > 0.05). However, there was a significant increase in Hcy concentration in patients treated with valproic acid who were diagnosed with epilepsy (p=0.0007). It is advisable to measure reduced Hcy level in patients taking valproic acid. The developed HFCF-UF method was simple and accurate. It can be easily applied in clinical research to evaluate oxidative stress in further study.


Subject(s)
Blood Chemical Analysis/methods , Cysteine/blood , Dipeptides/blood , Glutathione/blood , Homocysteine/blood , Ultrafiltration/methods , Anti-Bacterial Agents/blood , Anti-Bacterial Agents/chemistry , Chromatography, High Pressure Liquid/methods , Cysteine/chemistry , Dipeptides/chemistry , Enzyme Inhibitors/blood , Enzyme Inhibitors/chemistry , Freezing , Glutathione/chemistry , Homocysteine/chemistry , Humans , Limit of Detection , Methotrexate/blood , Methotrexate/chemistry , Molecular Structure , Tandem Mass Spectrometry/methods , Temperature , Valproic Acid/blood , Valproic Acid/chemistry , Vancomycin/blood , Vancomycin/chemistry
7.
Front Pharmacol ; 12: 636975, 2021.
Article in English | MEDLINE | ID: mdl-33995039

ABSTRACT

High-dose methotrexate (HD-MTX) can be highly effective as well as extremely toxic. Many drug molecules can bind to plasma proteins to different extents in vivo, whereas only the free drug can reach the site of action to exert a pharmacological effect and cause toxicity. However, free MTX concentrations in plasma have not been reported. Traditional analyses of free drugs are both cumbersome and inaccurate. We collected 92 plasma samples from 52 children diagnosed with ALL or NHL or other lymphomas that were treated with HD-MTX. The hollow fiber centrifugal ultrafiltration (HFCF-UF) was used to prepare plasma samples for analysis of the free MTX concentration. Protein precipitation was employed to measure the total MTX concentration. The HFCF-UF is a simple method involving a step of ordinary centrifugation; the validation parameters for the methodological results were satisfactory and fell within the acceptance criteria. A linearity coefficient r 2 of 0.910 was obtained for the correlation between the free and total MTX plasma concentrations in 92 plasma samples. However, the free and total MTX concentrations was only weakly correlated in 16 clinical plasma specimens with total MTX concentrations >2 µmol L-1 (r 2 = 0.760). Both the free and total MTX concentrations at 42 h were negatively correlated with the creatinine clearance (CCr) level (P = 0.023, r = -0.236 for total MTX and P = 0.020, r = -0.241for free MTX, respectively). The free MTX concentration could not be accurately estimated from the total MTX concentration for patients with high MTX levels which are conditions under which toxic reactions are more likely to occur. High plasma MTX levels could become a predictor of the occurrence of MTX nephrotoxicity to draw people's attention. The proposed HFCF-UF method is a simple and accurate way to evaluate efficacy and toxicity in clinical therapeutic drug monitoring.

8.
Adv Electron Mater ; 7(6)2021 Jun.
Article in English | MEDLINE | ID: mdl-36111247

ABSTRACT

The large-scale growth of semiconducting thin films on insulating substrates enables batch fabrication of atomically thin electronic and optoelectronic devices and circuits without film transfer. Here an efficient method to achieve rapid growth of large-area monolayer MoSe2 films based on spin coating of Mo precursor and assisted by NaCl is reported. Uniform monolayer MoSe2 films up to a few inches in size are obtained within a short growth time of 5 min. The as-grown monolayer MoSe2 films are of high quality with large grain size (up to 120 µm). Arrays of field-effect transistors are fabricated from the MoSe2 films through a photolithographic process; the devices exhibit high carrier mobility of ≈27.6 cm2 V-1 s-1 and on/off ratios of ≈105. The findings provide insight into the batch production of uniform thin transition metal dichalcogenide films and promote their large-scale applications.

9.
Ther Drug Monit ; 43(2): 292-297, 2021 04 01.
Article in English | MEDLINE | ID: mdl-32947555

ABSTRACT

BACKGROUND: With the outbreak of COVID-19, it has become very important to improve biosafety measures taken by medical staff. Fewer pretreatment steps correspond to lower chances of infection. The authors established a direct injection technique to analyze levetiracetam (LEV) concentrations in human serum and studied its application in therapeutic drug monitoring. METHODS: Serum samples were prepared by hollow fiber centrifugal ultrafiltration and the filtrate was directly injected into a ultra-high performance liquid chromatography apparatus (Waters UPLC BEH C18 column: 50 × 2.1 mm, 1.7 µm) for analysis. The mobile phase consisted of acetonitrile and water (8:92) at a flow rate of 1.0 mL/min. The column temperature was maintained at 30°C. The detected wavelength was 210 nm. RESULTS: A linear relationship was obtained for LEV from 0.625 to 80 mcg/mL (r2 = 0.999). The limit of detection for the analysis of LEV was 0.125 mcg/mL. The analysis time was shortened to 4 minutes. The recovery rate of LEV based on the current method was 96.6%-100.1%, whereas the absolute recovery rate was 93.2%-96.8%. The relative SD of intraday and interday precision was <7.3%. Stability was achieved at room temperature for 24 hours after 3 freeze-thaw cycles and at -80°C for 21 days. The method was successfully applied to determine LEV concentrations in the serum of 19 patients. CONCLUSIONS: The present method is simple, accurate, and sensitive, and can improve biosafety with the direct injection technique. It is suitable for the analysis of LEV concentrations in therapeutic drug monitoring.


Subject(s)
Blood Specimen Collection/methods , COVID-19/epidemiology , Drug Monitoring/methods , Levetiracetam/blood , Chromatography, High Pressure Liquid , Humans , Reproducibility of Results , SARS-CoV-2 , Time Factors
10.
ACS Nano ; 14(11): 16013-16021, 2020 Nov 24.
Article in English | MEDLINE | ID: mdl-33090766

ABSTRACT

Despite extensive research on the tribological properties of MoS2, the frictional characteristics of other members of the transition-metal dichalcogenide (TMD) family have remained relatively unexplored. To understand the effect of the chalcogen on the tribological behavior of these materials and gain broader general insights into the factors controlling friction at the nanoscale, we compared the friction force behavior for a nanoscale single asperity sliding on MoS2, MoSe2, and MoTe2 in both bulk and monolayer forms through a combination of atomic force microscopy experiments and molecular dynamics simulations. Experiments and simulations showed that, under otherwise identical conditions, MoS2 has the highest friction among these materials and MoTe2 has the lowest. Simulations complemented by theoretical analysis based on the Prandtl-Tomlinson model revealed that the observed friction contrast between the TMDs was attributable to their lattice constants, which differed depending on the chalcogen. While the corrugation amplitudes of the energy landscapes are similar for all three materials, larger lattice constants permit the tip to slide more easily across correspondingly wider saddle points in the potential energy landscape. These results emphasize the critical role of the lattice constant, which can be the determining factor for frictional behavior at the nanoscale.

11.
ACS Nano ; 14(10): 13611-13618, 2020 Oct 27.
Article in English | MEDLINE | ID: mdl-33054170

ABSTRACT

Semiconducting monolayers of a 2D material are able to concatenate multiple interesting properties into a single component. Here, by combining opto-mechanical and electronic measurements, we demonstrate the presence of a partial 2H-1T' phase transition in a suspended 2D monolayer membrane of MoS2. Electronic transport shows unexpected memristive properties in the MoS2 membrane, in the absence of any external dopants. A strong mechanical softening of the membrane is measured concurrently and may only be related to the 2H-1T' phase transition, which imposes a 3% directional elongation of the topological 1T' phase with respect to the semiconducting 2H. We note that only a few percent 2H-1T' phase switching is sufficient to observe measurable memristive effects. Our experimental results combined with first-principles total energy calculations indicate that sulfur vacancy diffusion plays a key role in the initial nucleation of the phase transition. Our study clearly shows that nanomechanics represents an ultrasensitive technique to probe the crystal phase transition in 2D materials or thin membranes. Finally, a better control of the microscopic mechanisms responsible for the observed memristive effect in MoS2 is important for the implementation of future devices.

12.
J Pharm Biomed Anal ; 189: 113414, 2020 Sep 10.
Article in English | MEDLINE | ID: mdl-32629193

ABSTRACT

Fatal road traffic crashes are often related to multifarious risk factors, among which driving under the influence of drugs (DUID) has been reported as a significantly contributing cause. The first worry about the side-effect of influencing driving drugs is central nervous system adverse reaction, and anti-hypersensitivity drugs are a class of drugs with such side effects meanwhile has been widely used for common allergic diseases thus posing a great challenge to road safety and demanding a rapid and efficient method to detect. In this work, a method based on magnetic graphene oxide dispersive solid phase extraction (MGO-D-SPE) combined with ion mobility spectrometry (IMS) was firstly introduced for simultaneous determination of ephedrine, pseudoephedrine, diphenhydramine, promethazine and terfenadine in saliva and urine matrices. The prepared MGO was characterized by Fourier transform infrared (FT-IR) spectroscopy and thermo gravimetric analysis (TGA). Various parameters affecting extraction efficiency as well as instrumental acquisition sensitivity were studied and optimized. Under the optimum experimental conditions, the method was fully validated and the results demonstrated that the proposed method exhibited some advantages, including a good linearity covering large concentration ranges of 51.0-3040 ng ml-1 for five anti-hypersensitivity drugs, and good accuracy was also obtained with high precision (CV% < 5.0 %). LODs and LOQs were 10.2-50.4 ng·mL-1 and 30.6-101.3 ng·mL-1, respectively. Consequently, the MGO-D-SPE-IMS methodology succeeded in building a hitherto unexplored tool for quantifying anti-hypersensitivity drugs in saliva and urine matrices of interest in DUID research field.


Subject(s)
Graphite , Pharmaceutical Preparations , Ion Mobility Spectrometry , Limit of Detection , Magnetic Phenomena , Saliva , Solid Phase Extraction , Spectroscopy, Fourier Transform Infrared
13.
2d Mater ; 7(1)2020 Jan.
Article in English | MEDLINE | ID: mdl-32523701

ABSTRACT

Owing to their unique electrical and optical properties, two-dimensional transition metal dichalcogenides have been extensively studied for their potential applications in biosensing. However, simultaneous utilization of both optical and electrical properties has been overlooked, yet it can offer enhanced accuracy and detection versitility. Here, we demonstrate a dual-mode optoelectronic biosensor based on monolayer molybdenum disulfide (MoS2) capable of producing simultaneous electrical and optical readouts of biomolecular signals. On a single platform, the biosensor exhibits a tunable photonic Fano-type optical resonance while also functioning as a field-effect transistor (FET) based on a optically transparent gate electrode. Furthermore, chemical vapor deposition grown MoS2 provides a clean surface for direct immobilization of a water-soluble variant of the µ-opioid receptor (wsMOR), via a nickel ion-mediated linker chemistry. We utilize a synthetic opioid peptide to show the operation of the electronic and optical sensing modes. The responses of both modes exhibit a similar trend with dynamic ranges of four orders of magnitude and detection limits of <1 nM. Our work explores the potential of a versatile multimodal sensing platform enabled by monolayer MoS2, since the integration of electrical and optical sensors on the same chip can offer flexibility in read-out and improve the accuracy in detection of low concentration targets.

14.
J Pharm Biomed Anal ; 179: 112988, 2020 Feb 05.
Article in English | MEDLINE | ID: mdl-31812805

ABSTRACT

Potential genotoxic impurities (PGIs) are a series of compounds that could potentially damage DNA. Therefore, a sensitive method is needed for detection and quantification. The present work described and validated a method for the quantification of one PGI (namely 1,4-benzodioxane-6-aldehyde) in Eliglustat tartrate (EGT) active pharmaceutical ingredient (API) substances using dispersive liquid-liquid microextraction (DLLME) as sample preparation to remove matrix effect and detected by HPLC-UV. Parameters influencing the microextraction efficiency were systematically investigated. The combined application of DLLME and HPLC-UV provided the sensitivity of the method. The achieved limit of detection (LOD) and the limit of quantification (LOQ) were adequate for the specific purpose and found to be 1.29 µg g-1 and 2.58 µg g-1, respectively. This simple and effective methodology offers a key advantage in the ease of removing matrix effect and improves sensitivity obviously. In addition, no costly instrumentation and skilled personnel are needed when using this method, which is available and can be successfully implemented in routine factory drug quality control analysis.


Subject(s)
Aldehydes/analysis , Drug Contamination , Liquid Phase Microextraction/methods , Pyrrolidines/chemistry , Chromatography, High Pressure Liquid/methods , Limit of Detection , Tandem Mass Spectrometry/methods
15.
Nanotechnology ; 31(10): 105302, 2019 Nov 20.
Article in English | MEDLINE | ID: mdl-31747649

ABSTRACT

Two-dimensional (2D) van der Waals superlattices comprised of two stacked monolayer materials have attracted significant interest as platforms for novel optoelectronic and structural behavior. Although studies are focused on superlattice fabrication, less effort has been given to the nanoscale patterning and structural modification of these systems. In this report, we demonstrate the localized layer-by-layer thinning and formation of nanopores/defects in 2D superlattices, such as stacked MoS2-WS2 van der Waals heterostructures and chemical vapor deposited bilayer WSe2, using aberration-corrected scanning transmission electron microscopy (STEM). Controlled electron beam irradiation is used to locally thin superlattices by removing the bottom layer of atoms, followed by defect formation through ablation of the second layer of atoms. The resulting defects exhibit atomically-sharp pore edges with tunable diameters down to 0.6 nm. Structural periodicities and focused STEM irradiation are also utilized to form close-packed nanopore arrays in superlattices with varying twist angles and commensurability. Applying these methods and mechanisms provides a forward approach in the atomic-scale patterning of stacked 2D nanodevices.

16.
ACS Nano ; 13(9): 10490-10498, 2019 Sep 24.
Article in English | MEDLINE | ID: mdl-31424199

ABSTRACT

Bilayer two-dimensional (2D) van der Waals (vdW) materials are attracting increasing attention due to their predicted high quality electronic and optical properties. Here, we demonstrate dense, selective growth of WSe2 bilayer flakes by chemical vapor deposition with the use of a 1:10 molar mixture of sodium cholate and sodium chloride as the growth promoter to control the local diffusion of W-containing species. A large fraction of the bilayer WSe2 flakes showed a 0 (AB) and 60° (AA') twist between the two layers, whereas Moiré 15 and 30° twist angles were also observed. Well-defined monolayer-bilayer junctions were formed in the as-grown bilayer WSe2 flakes, and these interfaces exhibited p-n diode rectification and an ambipolar transport characteristic. This work provides an efficient method for the layer-controlled growth of 2D materials, in particular, 2D transition metal dichalcogenides, and promotes their applications in next-generation electronic and optoelectronic devices.

17.
Nano Lett ; 19(8): 5496-5505, 2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31267757

ABSTRACT

Ultralow friction can be achieved with 2D materials, particularly graphene and MoS2. The nanotribological properties of these different 2D materials have been measured in previous atomic force microscope (AFM) experiments sequentially, precluding immediate and direct comparison of their frictional behavior. Here, friction is characterized at the nanoscale using AFM experiments with the same tip sliding over graphene, MoS2, and a graphene/MoS2 heterostructure in a single measurement, repeated hundreds of times, and also measured with a slowly varying normal force. The same material systems are simulated using molecular dynamics (MD) and analyzed using density functional theory (DFT) calculations. In both experiments and MD simulations, graphene consistently exhibits lower friction than the MoS2 monolayer and the heterostructure. In some cases, friction on the heterostructure is lower than that on the MoS2 monolayer. Quasi-static MD simulations and DFT calculations show that the origin of the friction contrast is the difference in energy barriers for a tip sliding across each of the three surfaces.

18.
Nanoscale ; 10(48): 22908-22916, 2018 Dec 13.
Article in English | MEDLINE | ID: mdl-30488928

ABSTRACT

Two-dimensional molybdenum-disulfide (MoS2) catalysts can achieve high catalytic activity for the hydrogen evolution reaction upon appropriate modification of their surface. The intrinsic inertness of the compound's basal planes can be overcome by either increasing the number of catalytically active edge sites or by enhancing the activity of the basal planes via a controlled creation of sulfur vacancies. Here, we report a novel method of activating the MoS2 surface using swift heavy ion irradiation. The creation of nanometer-scale structures by an ion beam, in combination with the partial sulfur depletion of the basal planes, leads to a large increase of the number of low-coordinated Mo atoms, which can form bonds with adsorbing species. This results in a decreased onset potential for hydrogen evolution, as well as in a significant enhancement of the electrochemical current density by over 160% as compared to an identical but non-irradiated MoS2 surface.

19.
Langmuir ; 34(38): 11325-11334, 2018 09 25.
Article in English | MEDLINE | ID: mdl-30169960

ABSTRACT

Two-dimensional heterostructures, such as Fe2O3/MXene nanoparticles, can be attractive anode materials for lithium-ion batteries (LIBs) due to the synergy between high lithium-storage capacity of Fe2O3 and stable cyclability and high conductivity provided by MXene. Here, we improved the storage performance of Ti3C2T x (MXene)/Fe2O3 nanocomposite by confining Fe2O3 nanoparticles into Ti3C2T x nanosheets with different mixing ratios using a facile and scalable dry ball-milling process. Composites of Ti3C2T x-25 wt % Fe2O3 and Ti3C2T x-50 wt % Fe2O3 synthesized by ball-milling resulted in uniform distribution of Fe2O3 nanoparticles on Ti3C2T x nanosheets with minimum oxidation of MXene as compared to composites prepared by hydrothermal or wet sonication. Moreover, the composites demonstrated minimum restacking of the nanosheets and higher specific surface area. Among all studied composites, the Ti3C2T x-50 wt % Fe2O3 showed the highest reversible specific capacity of ∼270 mAh g-1 at 1C (∼203 mAh g-1 based on the composite) and rate performance of 100 mAh g-1 at 10C. This can open the door for synthesizing stable and high-performance MXene/transition metal oxide composites with significantly enhanced electrochemical performance for LIB applications.

20.
ACS Appl Mater Interfaces ; 10(29): 24491-24498, 2018 Jul 25.
Article in English | MEDLINE | ID: mdl-29956920

ABSTRACT

Two-dimensional (2D) particles, including transition metal carbides (MXenes), often exhibit large lateral-size polydispersity in delaminated colloidal solutions. This heterogeneity results in challenges when conducting fundamental studies, such as investigating correlations between properties and the 2D flake size. To resolve this challenge, we have developed solution-processable techniques to control and sort 2D titanium carbide (Ti3C2T x) MXene flakes after synthesis based on sonication and density gradient centrifugation, respectively. By tuning the sonication conditions, Ti3C2T x flakes with varied lateral sizes, ranging from 0.1 to ∼5 µm, can be obtained. Furthermore, density gradient centrifugation was used to sort Ti3C2T x flakes with different lateral sizes into more monodisperse fractions. These processing techniques allow for the characterization of size-dependent optical and electronic properties by measuring the absorption spectra and film conductivity, respectively. Additionally, by testing the material as electrochemical capacitor electrodes, we show the Ti3C2T x flake-size dependence of electrochemical performance. Ti3C2T x films made of flakes with lateral sizes of ∼1 µm showed the best capacitance of 290 F/g at 2 mV/s and rate performance with 200 F/g at 1000 mV/s. The work provides a general methodology which can be followed to control the size of MXenes  and other 2D materials for a variety of applications and fundamental size-dependent studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...