Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Heliyon ; 10(12): e33265, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39022107

ABSTRACT

Electroacupuncture pretreatment is considered as an optimal strategy for inducing cerebral ischaemic tolerance. However, the underlying neuroprotective mechanism of this approach has never been explored from the perspective of calcium homeostasis. Intracellular calcium overload is a key inducer of cascade neuronal injury in the early stage after cerebral ischaemia attack and the Na+/Ca2+ exchanger (NCX) is the main plasma membrane calcium extrusion pathway maintaining post-ischaemic calcium homeostasis. This study aims to investigate whether the regulation of NCX-mediated calcium transport contributes to the cerebroprotective effect of electroacupuncture pretreatment against ischaemic injury and to elucidate the underlying mechanisms involved in this process. Following five days of repeated electroacupuncture stimulation on Baihui (GV20), Neiguan (PC6), and Sanyinjiao (SP6) acupoints in rats, in vivo and in vitro models of cerebral ischaemia were induced through middle cerebral artery occlusion and oxygen/glucose deprivation (OGD), respectively. Firstly, we verified the neuroprotective effect of electroacupuncture pretreatment from the perspective of neurological score, infarct volume and neuronal apoptosis. Our findings from brain slice patch-clamp indicated that electroacupuncture pretreatment enhanced the Ca2+ efflux capacity of NCX after OGD. NCX1 expression in the ischaemic penumbra exhibited a consistent decline from 1 to 24 h in MCAO rats. Electroacupuncture pretreatment upregulated the expression of NCX1, especially at 24 h, and silencing NCX1 by short hairpin RNA (shRNA) administration reversed the protective effect of electroacupuncture pretreatment against cerebral ischaemic injury. Furthermore, we administered LY294002, a phosphatidylinositol 3 kinase (PI3K) inhibitor, prior to inducing ischaemia to investigate the upstream regulatory mechanism of electroacupuncture pretreatment on NCX1 expression. Electroacupuncture pretreatment activates PI3K/Akt pathway, leading to an increase in the expression of NCX1, which facilitates calcium extrusion and exerts a neuroprotective effect against cerebral ischaemia. These findings provided a novel insight into the prevention of ischemic stroke and other similar conditions characterized by brain ischaemia or hypoperfusion.

2.
Materials (Basel) ; 13(23)2020 Nov 26.
Article in English | MEDLINE | ID: mdl-33255929

ABSTRACT

Cyclic response and fatigue behavior are sensitive to the microstructure of material induced by heat treatment. In this paper, three sets of high-temperature superalloy Inconel 718 with different heat treatment, namely annealed, aged, and directly aged high quality (DAHQ), are compared. Difference in grain size distribution, phase, and precipitate, etc., were investigated using an optical camera and scanning electron microscopy. Yield and ultimate strength were found to increase obviously after aging heat treatment. Self-heating phenomenon at 20 kHz was attenuated as grain size decreased. There was a transition from cyclic hardening to softening. Very-high cycle fatigue (VHCF) behavior of Inconel 718 was tested using an ultrasonic fatigue device. Crack initiation duration occupied greater than 99% of the total fatigue life. It concluded that average grain size influences VHCF strength and crack initiation mechanism, and that self-heating phenomenon is not a decisive factor on VHCF strength for Inconel 718.

3.
Neural Plast ; 2020: 8840675, 2020.
Article in English | MEDLINE | ID: mdl-33061951

ABSTRACT

Background: As one of the first steps in the pathology of cerebral ischemia, glutamate-induced excitotoxicity progresses too fast to be the target of postischemic intervention. However, ischemic preconditioning including electroacupuncture (EA) might elicit cerebral ischemic tolerance through ameliorating excitotoxicity. Objective: To investigate whether EA pretreatment based on TCM theory could elicit cerebral tolerance against ischemia/reperfusion (I/R) injury, and explore its potential excitotoxicity inhibition mechanism from regulating proapoptotic pathway of the NMDA subtype of glutamate receptor (GluN2B). Methods: The experimental procedure included 5 consecutive days of pretreatment stage and the subsequent modeling stage for one day. All rats were evenly randomized into three groups: sham MCAO/R, MCAO/R, and EA+MCAO/R. During pretreatment procedure, only rats in the EA+MCAO/R group received EA intervention on GV20, SP6, and PC6 once a day for 5 days. Model preparation for MCAO/R or sham MCAO/R started 2 hours after the last pretreatment. 24 hours after model preparation, the Garcia neurobehavioral scoring criteria was used for the evaluation of neurological deficits, TTC for the measurement of infarct volume, TUNEL staining for determination of neural cell apoptosis at hippocampal CA1 area, and WB and double immunofluorescence staining for expression and the cellular localization of GluN2B and m-calpain and p38 MAPK. Results: This EA pretreatment regime could improve neurofunction, decrease cerebral infarction volume, and reduce neuronal apoptosis 24 hours after cerebral I/R injury. And EA pretreatment might inhibit the excessive activation of GluN2B receptor, the GluN2B downstream proapoptotic mediator m-calpain, and the phosphorylation of its transcription factor p38 MAPK in the hippocampal neurons after cerebral I/R injury. Conclusion: The EA regime might induce tolerance against I/R injury partially through the regulation of the proapoptotic GluN2B/m-calpain/p38 MAPK pathway of glutamate.


Subject(s)
Apoptosis , Brain Ischemia/metabolism , Electroacupuncture , Reperfusion Injury/metabolism , Signal Transduction , Animals , CA1 Region, Hippocampal/metabolism , Calpain/metabolism , Male , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
4.
Article in English | MEDLINE | ID: mdl-32724324

ABSTRACT

The present study investigated the effects of electroacupuncture on blood pressure in spontaneously hypertensive rats (SHRs) by regulating the immune balance of T helper 17 cells (Th17 cells) and regulatory T cells (Treg cells). This study investigated the role of electroacupuncture in the immune balance of SHRs using Western blot, flow cytometry, and ELISA techniques. Electroacupuncture significantly improved blood pressure, downregulated the expression of RORγt, and upregulated the expression of Foxp3, reduced the production of Th17 cells, promoted the production of Treg cells, reduced the secretion of IL-6 and IL-17, and increased the secretion of TGF-ß1 and IL-10. These findings suggest that electroacupuncture therapy effectively improved the systolic blood pressure of SHRs, and its mechanism may be related to promotion of the immune balance between Th17 and Treg.

5.
Zhen Ci Yan Jiu ; 44(10): 777-80, 2019 Oct 25.
Article in Chinese | MEDLINE | ID: mdl-31657171

ABSTRACT

Astrocytes are the most abundant cells in the central nervous system, which has been demonstrated to be one of the targets for the treatment of ischemic stroke. Many studies have confirmed that acupuncture can effectively regulate astrocyte activity in ischemic stroke through these approaches: repairing astrocyte morphology structure, regu-lating energy metabolism, inhibiting excitotoxicity, inhibiting inflammation response and promoting nerve regeneration. In this paper, the authors summarized the relationship between astrocyte and ischemic stroke, and discussed the mechanisms of acupuncture therapy underlying improvement of ischemic stroke. Additionally, the authors also put forward some suggestions about future researches on acupuncture in ischemic stroke.


Subject(s)
Acupuncture Therapy , Brain Ischemia , Stroke , Astrocytes , Brain Ischemia/therapy , Humans , Nerve Regeneration , Stroke/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...