Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
J Nanobiotechnology ; 22(1): 229, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720321

ABSTRACT

Efficiently removing excess reactive oxygen species (ROS) generated by various factors on the ocular surface is a promising strategy for preventing the development of dry eye disease (DED). The currently available eye drops for DED treatment are palliative, short-lived and frequently administered due to the short precorneal residence time. Here, we developed nanozyme-based eye drops for DED by exploiting borate-mediated dynamic covalent complexation between n-FeZIF-8 nanozymes (n-Z(Fe)) and poly(vinyl alcohol) (PVA) to overcome these problems. The resultant formulation (PBnZ), which has dual-ROS scavenging abilities and prolonged corneal retention can effectively reduce oxidative stress, thereby providing an excellent preventive effect to alleviate DED. In vitro and in vivo experiments revealed that PBnZ could eliminate excess ROS through both its multienzyme-like activity and the ROS-scavenging activity of borate bonds. The positively charged nanozyme-based eye drops displayed a longer precorneal residence time due to physical adhesion and the dynamic borate bonds between phenyboronic acid and PVA or o-diol with mucin. The in vivo results showed that eye drops could effectively alleviate DED. These dual-function PBnZ nanozyme-based eye drops can provide insights into the development of novel treatment strategies for DED and other ROS-mediated inflammatory diseases and a rationale for the application of nanomaterials in clinical settings.


Subject(s)
Dry Eye Syndromes , Ophthalmic Solutions , Reactive Oxygen Species , Ophthalmic Solutions/chemistry , Ophthalmic Solutions/pharmacology , Dry Eye Syndromes/drug therapy , Animals , Reactive Oxygen Species/metabolism , Mice , Oxidative Stress/drug effects , Cornea/drug effects , Cornea/metabolism , Polyvinyl Alcohol/chemistry , Humans , Free Radical Scavengers/chemistry , Free Radical Scavengers/pharmacology , Borates/chemistry , Nanoparticles/chemistry , Male
2.
J Org Chem ; 89(8): 5560-5572, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38564232

ABSTRACT

A simple, efficient, and practical method for the synthesis of S-quinolyl xanthates was developed via Ts2O-promoted deoxygenative C-H dithiocarbonation of quinoline N-oxides with various potassium O-alkyl xanthates. The reaction performed well under transition-metal-free, base-free, and room-temperature conditions with wide substrate tolerance. Employing potassium O-tert-butyl xanthate (tBuOCS2K) as a nucleophile, some valuable quinoline-2-thiones were unexpectedly obtained in a one-pot reaction without any additional base.

3.
Nano Lett ; 24(13): 4044-4053, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38517749

ABSTRACT

Fungal keratitis (FK) is an infectious eye disease that poses a significant risk of blindness. However, the effectiveness of conventional antifungal drugs is limited due to the intrinsic ocular barrier that impedes drug absorption. There is an urgent need to develop new therapeutic strategies to effectively combat FK. Herein, we synthesized an ultrasmall positively charged carbon dot using a simple stage-melting method. The carbon dot can penetrate the corneal barrier by opening the tight junctions, allowing them to reach the lesion site and effectively kill the fungi. The results both in vitro and in vivo demonstrated that it exhibited good biocompatibility and antifungal activity, significantly improving the therapeutic effect in a mouse model of FK. Therefore, this biophilic ultrasmall size and positive carbon dot, characterized by its ability to penetrate the corneal barrier and its antifungal properties, may offer valuable insights into the design of effective ocular nanomedicines.


Subject(s)
Corneal Ulcer , Eye Infections, Fungal , Keratitis , Animals , Mice , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Keratitis/drug therapy , Keratitis/microbiology , Corneal Ulcer/drug therapy , Corneal Ulcer/microbiology , Eye Infections, Fungal/drug therapy , Eye Infections, Fungal/microbiology , Cornea/microbiology
4.
Molecules ; 29(5)2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38474508

ABSTRACT

The incorporation of amide groups into biologically active molecules has been proven to be an efficient strategy for drug design and discovery. In this study, we present a simple and practical method for the synthesis of amide-containing quinazolin-4(3H)-ones under transition-metal-free conditions. This is achieved through a carbamoyl-radical-triggered cascade cyclization of N3-alkenyl-tethered quinazolinones. Notably, the carbamoyl radical is generated in situ from the oxidative decarboxylative process of oxamic acids in the presence of (NH4)2S2O8.

5.
Nanomicro Lett ; 16(1): 120, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38372846

ABSTRACT

Dry eye disease (DED) is a major ocular pathology worldwide, causing serious ocular discomfort and even visual impairment. The incidence of DED is gradually increasing with the high-frequency use of electronic products. Although inflammation is core cause of the DED vicious cycle, reactive oxygen species (ROS) play a pivotal role in the vicious cycle by regulating inflammation from upstream. Therefore, current therapies merely targeting inflammation show the failure of DED treatment. Here, a novel dual-atom nanozymes (DAN)-based eye drops are developed. The antioxidative DAN is successfully prepared by embedding Fe and Mn bimetallic single-atoms in N-doped carbon material and modifying it with a hydrophilic polymer. The in vitro and in vivo results demonstrate the DAN is endowed with superior biological activity in scavenging excessive ROS, inhibiting NLRP3 inflammasome activation, decreasing proinflammatory cytokines expression, and suppressing cell apoptosis. Consequently, the DAN effectively alleviate ocular inflammation, promote corneal epithelial repair, recover goblet cell density and tear secretion, thus breaking the DED vicious cycle. Our findings open an avenue to make the DAN as an intervention form to DED and ROS-mediated inflammatory diseases.

6.
Sci Total Environ ; 920: 170803, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38342448

ABSTRACT

Novel tourmaline-biochar composites (TBs) were synthesized by introducing tourmaline (TM) into pomelo peel biochar (BC). The surface properties of TBs and BC were studied and the adsorption performances for Pb2+ were investigated. Compared to pristine BC, the adsorption ability for Pb2+ on TBs was enhanced with the increase of TM in TBs, and up to 514.62 mg/g on 5%TB. The enrichment of inorganic metals caused by TM in TBs made the precipitation and cation ion exchange become the main mechanisms in adsorbing Pb2+, and the amounts of adsorbing Pb2+ by those two mechanisms on TBs were 1.10-1.48 times and 1.20-1.30 times those of BC, respectively. Furthermore, applying TBs to practical contaminated soil increased the soil pH and electrical conductivity (EC) after 15 days of incubation. The increased content of residual-Pb and reduced exchangeable-Pb and DTPA-Pb indicated that TBs were favorable for the immobilization of Pb in soil. This study gives a new perspective on the synthesis of tourmaline-biochar composite and their application in Pb-polluted water and soil.

7.
Org Biomol Chem ; 21(45): 9086-9090, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37946513

ABSTRACT

An environmentally benign protocol that provides various S-quinolyl xanthates via a ball milling enabled cross coupling reaction of haloquinolines and readily available potassium O-alkyl xanthates is first reported. The reaction proceeded well under mild, transition metal- and solvent-free conditions, making it an attractive method for the introduction of xanthates into the quinoline scaffold.

8.
J Environ Manage ; 344: 118497, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37413726

ABSTRACT

The heterogeneous Fenton-like systems induced by Fe-containing minerals have been largely applied for the degradation of organic pollutants. However, few studies have been conducted on biochar (BC) as an additive to Fenton-like systems mediated by iron-containing minerals. In this study, the addition of BC prepared at different temperatures was found to significantly enhance the degradation of contaminants in the tourmaline-mediated Fenton-like system (TM/H2O2) using Rhodamine B (RhB) as the target contaminant. Furthermore, the hydrochloric acid-modified BC prepared at 700 °C (BC700(HCl)) could achieve complete degradation of high concentrations of RhB in the BC700(HCl)/TM/H2O2 system. Free radical quenching experiments showed that TM/H2O2 system removed contaminants mainly mediated by the free radical pathway. After adding BC, the removal of contaminants is mainly mediated by the non-free radical pathway in BC700(HCl)/TM/H2O2 system which was confirmed by the Electron paramagnetic resonance (EPR) experiments and electrochemical impedance spectroscopy (EIS). In addition, BC700(HCl) had broad feasibility in the degradation of other organic pollutants (Methylene Blue (MB) 100%, Methyl Orange (MO) 100%, and tetracycline (TC) 91.47%) in the tourmaline-mediated Fenton-like system. Possible pathways for the degradation of RhB by the BC700(HCl)/TM/H2O2 system were also proposed.


Subject(s)
Environmental Pollutants , Hydrogen Peroxide , Hydrogen Peroxide/chemistry , Minerals , Free Radicals
9.
Bioresour Technol ; 386: 129447, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37399959

ABSTRACT

This paper examined the impacts of different pretreatments on the characteristics of biochar and its adsorption behavior for Pb2+. Biochar with combined pretreatment of water-washing and freeze-drying (W-FD-PB) performed a maximum adsorption capacity for Pb2+ of 406.99 mg/g, higher than that of 266.02 mg/g on water-washing pretreated biochar (W-PB) and 188.21 mg/g on directly pyrolyzed biochar (PB). This is because the water-washing process partially removed the K and Na, resulting in the relatively enriched Ca and Mg on W-FD-PB. And the freeze-drying pretreatment broke the fiber structure of pomelo peel, favoring the development of a fluffy surface and large specific surface area during pyrolysis. Quantitative mechanism analysis implied that cation ion exchange and precipitation were the driving forces in Pb2+ adsorption on biochar, and both mechanisms were enhanced during Pb2+ adsorption on W-FD-PB. Furthermore, adding W-FD-PB to Pb-contaminated soil increased the soil pH and significantly reduced the availability of Pb.


Subject(s)
Soil Pollutants , Water , Lead , Adsorption , Soil Pollutants/chemistry , Charcoal/chemistry , Soil
10.
Forensic Sci Int Genet ; 66: 102910, 2023 09.
Article in English | MEDLINE | ID: mdl-37406538

ABSTRACT

Estimating the time that bloodstains are left at a crime scene can provide invaluable evidence for law enforcement investigations, including determining the time of the crime, linking the perpetrator to the crime scene, narrowing the pool of possible suspects, and verifying witness statements. There have been some attempts to estimate the time since deposition of bloodstains, i.e., how much time has passed since the bloodstain was left at a crime scene. However, most studies focus on the time interval of days. As far as we know, previous study have been conducted to estimate the deposition time of blood within a 24-h day-night cycle. To date, there is a lack of studies on whether rhythmic mRNA of blood is suitable for bloodstain samples. In this study, we estimated the bloodstain deposition time within a 24-h day-night cycle based on the expression of messenger RNAs (mRNAs) by real-time quantitative polymerase chain reaction. Bloodstain samples were prepared from eight individuals at eight time points under real and uncontrolled conditions. Four mRNAs expressed rhythmically and were used to construct a regression model using the k-nearest neighbor (KNN) algorithm, resulting in a mean absolute error of 3.92 h. Overall, using the rhythmic mRNAs, a machine learning model was developed which has allowed us to predict the deposition time of bloodstains within the 24-h day-night cycle in East Asian populations. This study demonstrates that mRNA biomarkers can be used to estimate the bloodstain deposition time within a 24-h period. Furthermore, rhythmic mRNA biomarkers provide a potential method and perspective for estimating the deposition time of forensic traces in forensic investigation. Case samples in forensic analysis are usually limited or degraded, so the stability and sensitivity of rhythmic biomarkers need to be further investigated.


Subject(s)
Blood Stains , Humans , RNA, Messenger/genetics , Forensic Medicine/methods , Biomarkers , Algorithms
11.
Front Mol Neurosci ; 16: 1163981, 2023.
Article in English | MEDLINE | ID: mdl-37333615

ABSTRACT

Proper mitochondrial performance is imperative for the maintenance of normal neuronal function to prevent the development of neurodegenerative diseases. Persistent accumulation of damaged mitochondria plays a role in prion disease pathogenesis, which involves a chain of events that culminate in the generation of reactive oxygen species and neuronal death. Our previous studies have demonstrated that PINK1/Parkin-mediated mitophagy induced by PrP106-126 is defective and leads to an accumulation of damaged mitochondria after PrP106-126 treatment. Externalized cardiolipin (CL), a mitochondria-specific phospholipid, has been reported to play a role in mitophagy by directly interacting with LC3II at the outer mitochondrial membrane. The involvement of CL externalization in PrP106-126-induced mitophagy and its significance in other physiological processes of N2a cells treated with PrP106-126 remain unknown. We demonstrate that the PrP106-126 peptide caused a temporal course of mitophagy in N2a cells, which gradually increased and subsequently decreased. A similar trend in CL externalization to the mitochondrial surface was seen, resulting in a gradual decrease in CL content at the cellular level. Inhibition of CL externalization by knockdown of CL synthase, responsible for de novo synthesis of CL, or phospholipid scramblase-3 and NDPK-D, responsible for CL translocation to the mitochondrial surface, significantly decreased PrP106-126-induced mitophagy in N2a cells. Meanwhile, the inhibition of CL redistribution significantly decreased PINK1 and DRP1 recruitment in PrP106-126 treatment but had no significant decrease in Parkin recruitment. Furthermore, the inhibition of CL externalization resulted in impaired oxidative phosphorylation and severe oxidative stress, which led to mitochondrial dysfunction. Our results indicate that CL externalization induced by PrP106-126 on N2a cells plays a positive role in the initiation of mitophagy, leading to the stabilization of mitochondrial function.

12.
Psychol Res Behav Manag ; 16: 1707-1723, 2023.
Article in English | MEDLINE | ID: mdl-37179687

ABSTRACT

Aim: The study is based on the self-determination theory and aims to investigate the mediating role of green intrinsic motivation and the moderating role of green shared vision in the association between frontline managers' green mindfulness and green creative behavior to leverage their capacity to think creatively and act sustainably. Methods: The study employs a time-lagged, multi-source research methodology to collect data from frontline managers of service businesses in the tourism and hospitality industry. Data are analyzed using SmartPLS Structural Equation Model to evaluate the structural and measurement models. The authors evaluated the measurement model by employing the criteria of internal consistency: reliability and Cronbach's alpha, validity: convergent and discriminant validity; and the structural model using the path coefficient, coefficient of determination, predictive relevance, and goodness-of-fit metrics. Results: Our findings indicate that green mindfulness significantly improves frontline managers' green creative behavior. Additionally, green intrinsic motivation mediates the connection between green mindfulness and green creative behavior. In addition, the direct effect of green mindfulness on green intrinsic motivation as well as the indirect effect of green mindfulness on green creative behavior through green intrinsic motivation, are both significantly moderated by green shared vision. Discussion: To the best of the authors' knowledge, this is one of the few efforts that outstretch the boundary conditions of green mindfulness and green creative behavior through the mediating role of green intrinsic motivation and the moderating role of green shared vision.

13.
J Biomed Opt ; 28(4): 046006, 2023 04.
Article in English | MEDLINE | ID: mdl-37091909

ABSTRACT

Significance: Tissue phantoms that mimic the optical and radiologic properties of human or animal tissue play an important role in the development, characterization, and evaluation of imaging systems. Phantoms that are easily produced and stable for longitudinal studies are highly desirable. Aim: A new type of long-lasting phantom was developed with commercially available materials and was assessed for fabrication ease, stability, and optical property control. Magnetic resonance imaging (MRI) and x-ray computed tomography (CT) contrast properties were also evaluated. Approach: A systematic investigation of relationships between concentrations of skin-like pigments and composite optical properties was conducted to realize optical property phantoms in the red and near-infrared (NIR) wavelength range that also offered contrast for CT and MRI. Results: Phantom fabrication time was < 1 h and did not involve any heating or cooling processes. Changes in optical properties were < 2 % over a 12-month period. Phantom optical and spectral features were similar to human soft tissue over the red to NIR wavelength ranges. Pigments used in the study also had CT and MRI contrasts for multimodality imaging studies. Conclusions: The phantoms described here mimic optical properties of soft tissue and are suitable for multimodality imaging studies involving CT or MRI without adding secondary contrast agents.


Subject(s)
Contrast Media , Tomography, Optical , Animals , Humans , Multimodal Imaging , Tomography, X-Ray Computed , Phantoms, Imaging , Magnetic Resonance Imaging
14.
Article in English | MEDLINE | ID: mdl-36900837

ABSTRACT

Thallium is widely used in industrial and agricultural development. However, there is still a lack of systematic understanding of its environmental hazards and related treatment methods or technologies. Here, we critically assess the environmental behavior of thallium in aqueous systems. In addition, we first discuss the benefits and limitations of the synthetic methods of metal oxide materials that may affect the practicality and scalability of TI removal from water. We then assess the feasibility of different metal oxide materials for TI removal from water by estimating the material properties and contaminant removal mechanisms of four metal oxides (Mn, Fe, Al, and Ti). Next, we discuss the environmental factors that may inhibit the practicality and scalability of Tl removal from water. We conclude by highlighting the materials and processes that could serve as more sustainable alternatives to TI removal with further research and development.


Subject(s)
Water Pollutants, Chemical , Water Purification , Thallium , Water Pollutants, Chemical/analysis , Oxides , Water , Adsorption
15.
Front Chem ; 11: 1148354, 2023.
Article in English | MEDLINE | ID: mdl-36970408

ABSTRACT

Pathogenic microbial infections have been threatening public health all over the world, which makes it highly desirable to develop an antibiotics-free material for bacterial infection. In this paper, molybdenum disulfide (MoS2) nanosheets loaded with silver nanoparticles (Ag NPs) were constructed to inactive bacteria rapidly and efficiently in a short period under a near infrared (NIR) laser (660 nm) in the presence of H2O2. The designed material presented favorable features of peroxidase-like ability and photodynamic property, which endowed it with fascinating antimicrobial capacity. Compared with free MoS2 nanosheets, the MoS2/Ag nanosheets (denoted as MoS2/Ag NSs) exhibited better antibacterial performance against Staphylococcus aureus by the generated reactive oxygen species (ROS) from both peroxidase-like catalysis and photodynamic, and the antibacterial efficiency of MoS2/Ag NSs could be further improved by increasing the amount of Ag. Results from cell culture tests proved that MoS2/Ag3 nanosheets had a negligible impact on cell growth. This work provided new insight into a promising method for eliminating bacteria without using antibiotics, and could serve as a candidate strategy for efficient disinfection to treat other bacterial infections.

16.
Mol Neurobiol ; 60(3): 1391-1407, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36449254

ABSTRACT

Failed communication between mitochondria and lysosomes causes dysfunctional mitochondria, which may induce mitochondria-related neurodegenerative diseases. Here, we show that RAB7A, a small GTPase of the Rab family, mediates the crosstalk between these two important organelles to maintain homeostasis in N2a cells treated with PrP106-126. Specifically, we demonstrate that mitophagy deficiency in N2a cells caused by PrP106-126 is associated with dysregulated RAB7A localization in mitochondria. Cells lacking RAB7A display decreased mitochondrial colocalization with lysosomes and significantly increased mitochondrial protein expression, resulting in inhibited mitophagy. In contrast, overexpression of GTP-bound RAB7A directly induces lysosome colocalization with mitochondria. Further study revealed that GTP-bound RAB7A protects mitochondrial homeostasis by supporting autophagosome biogenesis. Moreover, we suggest that depletion of RAB7A leads to gross morphological changes in lysosomes, which prevents autophagosome-lysosome fusion and interferes with the breakdown of autophagic cargo within lysosomes. Overexpression of GTP-bound RAB7A can also alleviate PrP106-126-induced morphological damage and dysfunction of mitochondria, reducing neuronal apoptosis. Collectively, our data demonstrate that RAB7A successfully drives mitochondria to the autophagosomal lumen for degradation, suggesting that the communication of proteotoxic stress from mitochondria to lysosomes requires RAB7A, as a signaling molecule, to establish a link between the disturbed mitochondrial network and its remodeling. These findings indicate that small molecules regulating mitophagy have the potential to modulate cellular homeostasis and the clinical course of neurodegenerative diseases. Proposed model of mitophagy regulated by RAB7A. (1) Accumulating PrP106-126 induced mitophagy. (2) RAB7A is recruited to mitochondria. (3) ATG5-12 and ATG9A (5) vesicles are recruited to the autophagosome formation sites in a RAB7A-dependent manner. The ATG5-12 complex recruits and anchors LC3-I to form active LC3-II (4), accelerating mitophagosomal formation. The ATG9A vesicles are thought to be a source of membranes for autophagosome assembly. The recruitment of proteins and lipids induces membrane expansion and subsequent closure to form the mitophagosome. (6) Maintenance of the normal low lysosomal PH depends on active (GTP-bound) RAB7A. (7) RAB7A recruits effector molecules responsible for tight membrane interactions, and directly or indirectly, the subsequent autophagosome merges with the lysosome, and the cargo is completely degraded.


Subject(s)
Autophagosomes , Lysosomes , Prion Proteins , rab7 GTP-Binding Proteins , Humans , Autophagosomes/metabolism , Autophagy , Guanosine Triphosphate/metabolism , Lysosomes/metabolism , Prion Proteins/metabolism , Prions/metabolism , rab7 GTP-Binding Proteins/metabolism , Animals , Mice , Cell Line
17.
Ageing Res Rev ; 84: 101817, 2023 02.
Article in English | MEDLINE | ID: mdl-36503124

ABSTRACT

Mitochondria play key roles in bioenergetics, metabolism, and signaling; therefore, stable mitochondrial function is essential for cell survival, particularly in energy-intensive neuronal cells. In neurodegenerative diseases, damaged mitochondria accumulate in neurons causing associated bioenergetics deficiency, impaired cell signaling, defective cytoplasmic calcium buffering, and other pathological changes. Mitochondrial quality control is an important mechanism to ensure the maintenance of mitochondrial health, homeostasis, and mitophagy, the latter of which is a pathway that delivers defective mitochondria to the lysosome for degradation. Defective mitophagy is thought to be responsible for the accumulation of damaged mitochondria, which leads to cellular dysfunction and/or death in neurodegenerative diseases. PINK1/Parkin mainly regulates ubiquitin-dependent mitophagy, which is crucial for many aspects of mitochondrial physiology, particularly the initiation of autophagic mechanisms. Therefore, in the present review, we summarize the current knowledge of the conventional mitophagy pathway, focusing on the molecular mechanisms underlying mitophagy dysregulation in prion disease and other age-related neurodegenerative diseases, especially in relation to the PINK1/Parkin pathway. Moreover, we list the inducers of mitophagy that possess neuroprotective effects, in addition to their mechanisms related to the PINK1/Parkin pathway. These mechanisms may provide potential interventions centered on the regulation of mitophagy and offer therapeutic strategies for the treatment of neurodegenerative diseases.


Subject(s)
Mitophagy , Neurodegenerative Diseases , Protein Kinases , Ubiquitin-Protein Ligases , Humans , Neurodegenerative Diseases/enzymology , Protein Kinases/metabolism , Ubiquitin-Protein Ligases/metabolism
18.
Colloids Surf B Biointerfaces ; 219: 112811, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36067683

ABSTRACT

The abuse of antibiotics has led to the emergence of multidrug-resistant bacterial strains worldwide, which greatly threatens human health. In the present work, we developed single-atom catalysts (SACs) with atomically dispersed Fe as catalytic sites (Fe-SACs) to combat multidrug-resistant bacteria by elevating cellular reactive oxygen species (ROS). Our intensive studies confirmed that Fe-SACs were successfully prepared and exhibited excellent catalase (CAT)-, oxidase (OXD)-, and peroxidase (POD)-like activities. To enhance water dispersibility, biosafety and the interactions between the nanodrugs and gram-positive bacteria, phenylboronic acid group-functionalized carboxylated chitosan (CCS-PBA) was coated on the surface of Fe-SACs to yield Fe-SACs@CCS-PBA for in vitro and in vivo studies. The synergistic catalytic activity and photothermal activity of Fe-SACs@CCS-PBA effectively overcame multidrug-resistant bacterial strains (MRSA) in vitro and significantly accelerated wound healing in vivo, suggesting the great potential of SACs to overcome infectious disease caused by multidrug-resistant bacteria.


Subject(s)
Bacterial Infections , Chitosan , Humans , Anti-Bacterial Agents/pharmacology , Carboxylic Acids , Reactive Oxygen Species
19.
Front Psychol ; 13: 877375, 2022.
Article in English | MEDLINE | ID: mdl-35615173

ABSTRACT

Previous research has explored how emotional valence (positive or negative) affected face-context associative memory, while little is known about how arousing stimuli that share the same valence but differ in emotionality are bound together and retained in memory. In this study, we manipulated the emotional similarity between the target face and the face associated with the context emotion (i.e., congruent, high similarity, and low similarity), and examined the effect of emotional similarity of negative emotion (i.e., disgust, anger, and fear) on face-context associative memory. Our results showed that the greater the emotional similarity between the faces, the better the face memory and face-context associative memory were. These findings suggest that the processing of facial expression and its associated context may benefit from taking into account the emotional similarity between the faces.

20.
J Hazard Mater ; 431: 128584, 2022 06 05.
Article in English | MEDLINE | ID: mdl-35359100

ABSTRACT

The potential risk of various contaminants in water has recently attracted public attention. Biochars and modified biochars have been widely developed for environmental remediation. Metal and heteroatom co-doped biochar composites (MHBCs) quickly caught the interest of researchers with more active sites and higher affinity for contaminants compared to single-doped biochar by metal or heteroatoms. This study provides a comprehensive review of MHBCs in wastewater decontamination. Firstly, the main fabrication methods of MHBCs were external doping and internal doping, with external doping being the most common. Secondly, the applications of MHBCs as adsorbents and catalysts in water treatment were introduced emphatically, which mainly included the removal of metals, antibiotics, dyes, pesticides, phenols, and other organic contaminants. Thirdly, the removal mechanisms of contaminants by MHBCs were deeply discussed in adsorption, oxidation and reduction, and degradation. Furthermore, the influencing factors for the removal of contaminants by MHBCs were also summarized, including the physicochemical properties of MHBCs, and environmental variables of pH and co-existing substance. Finally, futural challenges of MHBCs are proposed in the leaching toxicity of metal from MHBCs, the choice of heteroatoms on the fabrication for MHBCs, and the application in the composite system and soil remediation.


Subject(s)
Charcoal , Environmental Restoration and Remediation , Adsorption , Charcoal/chemistry , Metals
SELECTION OF CITATIONS
SEARCH DETAIL
...