Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 142
Filter
1.
ACS Omega ; 9(20): 21838-21850, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38799363

ABSTRACT

Maternal separation (MS) represents a profound early life stressor with enduring impacts on neuronal development and adult cognitive function in both humans and rodents. MS is associated with persistent dysregulations in neurotransmitter systems, including the serotonin (5-HT) pathway, which is pivotal for mood stabilization and stress-coping mechanisms. Although the novel cannabinoid receptor, GPR55, is recognized for its influence on learning and memory, its implications on the function and synaptic dynamics of 5-HT neurons within the dorsal raphe nucleus (DRN) remain to be elucidated. In this study, we sought to discern the repercussions of GPR55 activation on 5-HT synthesis within the DRN of adult C57BL/6J mice that experienced MS. Concurrently, we analyzed potential alterations in excitatory synaptic transmission, long-term synaptic plasticity, and relevant learning and memory outcomes. Our behavioral assessments indicated a marked amelioration in MS-induced learning and memory deficits following GPR55 activation. In conjunction with this, we noted a substantial decrease in 5-HT levels in the MS model, while GPR55 activation stimulated tryptophan hydroxylase 2 synthesis and fostered the release of 5-HT. Electrophysiological patch-clamp analyses highlighted the ability of GPR55 activation to alleviate MS-induced cognitive deficits by modulating the frequency and magnitude of miniature excitatory postsynaptic currents within the DRN. Notably, this cognitive enhancement was underpinned by the phosphorylation of both NMDA and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. In summary, our findings underscore the capacity of GPR55 to elevate 5-HT synthesis and modify synaptic transmissions within the DRN of juvenile mice, positing GPR55 as a promising therapeutic avenue for ameliorating MS-induced cognitive impairment.

2.
Genome Med ; 16(1): 49, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566201

ABSTRACT

BACKGROUND: The efficacy of neoadjuvant chemo-immunotherapy (NAT) in esophageal squamous cell carcinoma (ESCC) is challenged by the intricate interplay within the tumor microenvironment (TME). Unveiling the immune landscape of ESCC in the context of NAT could shed light on heterogeneity and optimize therapeutic strategies for patients. METHODS: We analyzed single cells from 22 baseline and 24 post-NAT treatment samples of stage II/III ESCC patients to explore the association between the immune landscape and pathological response to neoadjuvant anti-PD-1 combination therapy, including pathological complete response (pCR), major pathological response (MPR), and incomplete pathological response (IPR). RESULTS: Single-cell profiling identified 14 major cell subsets of cancer, immune, and stromal cells. Trajectory analysis unveiled an interesting link between cancer cell differentiation and pathological response to NAT. ESCC tumors enriched with less differentiated cancer cells exhibited a potentially favorable pathological response to NAT, while tumors enriched with clusters of more differentiated cancer cells may resist treatment. Deconvolution of transcriptomes in pre-treatment tumors identified gene signatures in response to NAT contributed by specific immune cell populations. Upregulated genes associated with better pathological responses in CD8 + effector T cells primarily involved interferon-gamma (IFNγ) signaling, neutrophil degranulation, and negative regulation of the T cell apoptotic process, whereas downregulated genes were dominated by those in the immune response-activating cell surface receptor signaling pathway. Natural killer cells in pre-treatment tumors from pCR patients showed a similar upregulation of gene expression in response to IFNγ but a downregulation of genes in the neutrophil-mediated immunity pathways. A decreased cellular contexture of regulatory T cells in ESCC TME indicated a potentially favorable pathological response to NAT. Cell-cell communication analysis revealed extensive interactions between CCL5 and its receptor CCR5 in various immune cells of baseline pCR tumors. Immune checkpoint interaction pairs, including CTLA4-CD86, TIGIT-PVR, LGALS9-HAVCR2, and TNFSF4-TNFRSF4, might serve as additional therapeutic targets for ICI therapy in ESCC. CONCLUSIONS: This pioneering study unveiled an intriguing association between cancer cell differentiation and pathological response in esophageal cancer patients, revealing distinct subgroups of tumors for which neoadjuvant chemo-immunotherapy might be effective. We also delineated the immune landscape of ESCC tumors in the context of clinical response to NAT, which provides clinical insights for better understanding how patients respond to the treatment and further identifying novel therapeutic targets for ESCC patients in the future.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/therapy , Neoadjuvant Therapy , Esophageal Neoplasms/genetics , Esophageal Neoplasms/therapy , Immunotherapy , Combined Modality Therapy , Tumor Microenvironment , OX40 Ligand
3.
Heliyon ; 9(12): e22605, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38107270

ABSTRACT

Hepatocellular carcinoma (HCC) is a common malignant tumor of the digestive system with a low early diagnosis rate. Owing to the side effects, tolerance, and patient contraindications of existing therapies, effective drug treatments for HCC remain a major clinical challenge. However, using approved or investigational drugs not initially intended for cancer therapy is a promising strategy for resolving this problem because their safety have been tested in clinic. Therefore, this study evaluated differentially expressed genes between liver cancer and normal tissues in a cohort of patients with HCC from The Cancer Genome Atlas and applied them to query a connectivity map to identify candidate anti-HCC drugs. As a result, fluphenazine was identified as a candidate for anti-HCC therapy in vitro and in vivo. Fluphenazine suppressed HCC cell proliferation and migration and induced cell cycle arrest and apoptosis, possibly owing to disrupted lysosomal function, blocking autophagy flux. Additionally, in vivo studies demonstrated that fluphenazine suppresses HCC subcutaneous xenografts growth without causing severe side effects. Strikingly, fluphenazine could be used as an analgesic to alleviate oxaliplatin-induced pain as well as pain related anxiety-like behavior. Therefore, fluphenazine could be a novel liver cancer treatment candidate.

4.
Heliyon ; 9(9): e19233, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37674842

ABSTRACT

Liver hepatocellular carcinoma (LIHC) is a major malignant tumor of the digestive system with a high incidence rate and poor early diagnosis. Coiled-coil domain-containing protein 115 (CCDC115), an accessory component of vacuolar-ATPase with dramatically abnormal expression, is associated with survival outcomes of cancer patients. However, the role of CCDC115 in LIHC remains unclear. In this study, we aimed to determine the functional role of CCDC115 in LIHC by examining CCDC115 expression, and its influence on LIHC prognosis. Through extensive statistical analyses, using LIHC patient databases, we observed that CCDC115 expression significantly increased in tumor tissues of LIHC patients. In addition, CCDC115 expression correlated with the poor prognosis. Additionally, CCDC115 was found to be involved in several cancer-related pathways, specifically the PI3K-Akt pathway. The expression of CCDC115 was positively correlated with human leukocyte antigen molecules as well as with immune checkpoint molecules in LIHC patients. We performed in vitro experiments and confirmed that the expression of CCDC115 significantly affects the proliferation potential, metastasis and sorafenib resistance of liver cancer cells, as well as some key protein expression in PI3K-Akt pathway. These results indicate that CCDC115 could serve as a diagnostic and prognostic biomarker of LIHC, and targeting CCDC115 may provide a potential strategy to enhance the efficacy of liver cancer therapy.

5.
Brain Res Bull ; 202: 110734, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37586426

ABSTRACT

Abnormalities in hippocampal synaptic plasticity contribute to the pathogenesis of post-traumatic stress disorder (PTSD). The Wnt/ß-catenin signaling pathway is critical for the regulation of synaptic plasticity. PTSD symptoms can be alleviated by correcting impaired neural plasticity in the hippocampus (Hipp). Electroacupuncture (EA) has a therapeutic effect by relieving PTSD-like behaviors. However, little is known about whether the Wnt/ß-catenin pathway is involved in EA-mediated improvements of PTSD symptoms. In this study, we found that enhanced single prolonged stress (ESPS)-induced PTSD led to abnormal neural plasticity, characterized by the decline of dendritic spines, the expression of postsynaptic density 95 (PSD95), and synaptophysin (Syn) in the stressed Hipp along with the reduction of Wnt3a and ß-catenin, and increased GSK-3ß. EA significantly alleviated PTSD-like behaviors, as assessed by the open field test, elevated platform maze test and conditioning fear test. This was paralleled by correcting abnormal neural plasticity by promoting the expression of PSD95 and Syn, as well as the number of dendritic spines in the Hipp. Importantly, EA exerted anti-PTSD effects by augmenting the expression levels of Wnt3a and ß-catenin, and decreasing that of GSK-3ß. The effects mediated by EA were abolished by XAV939, an inhibitor of the Wnt/ß-catenin pathway. This suggests that EA relieved ESPS-induced PTSD-like behaviors, which can largely be ascribed to impaired neural plasticity in the Hipp. These findings provide new insights into possible mechanisms linking neural plasticity in the Hipp as potential novel targets for PTSD treatment in EA therapy.


Subject(s)
Electroacupuncture , Stress Disorders, Post-Traumatic , Animals , beta Catenin/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Hippocampus/metabolism , Neuronal Plasticity , Stress Disorders, Post-Traumatic/therapy , Stress Disorders, Post-Traumatic/metabolism , Transcription Factors/metabolism , Wnt Signaling Pathway , Mice
6.
Mol Neurobiol ; 60(11): 6410-6423, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37453994

ABSTRACT

Fragile X syndrome (FXS) is an inherited human mental retardation that arises from expansion of a CGG repeat in the Fmr1 gene, causing loss of the fragile X mental retardation protein (FMRP). It is reported that N-methyl-D-aspartate receptor (NMDAR)-mediated facilitation of long-term potentiation (LTP) and fear memory are impaired in Fmr1 knockout (KO) mice. In this study, biological, pharmacological, and electrophysiological techniques were performed to determine the roles of D-aspartate (D-Asp), a modulator of NMDAR, and its metabolizing enzyme D-aspartate oxidase (DDO) in Fmr1 KO mice. Levels of D-Asp were decreased in the medial prefrontal cortex (mPFC ); however, the levels of its metabolizing enzyme DDO were increased. Electrophysiological recordings indicated that oral drinking of D-Asp recovered LTP induction in mPFC from Fmr1 KO mice. Moreover, chronic oral administration of D-Asp reversed behavioral deficits of cognition and locomotor coordination in Fmr1 KO mice. The therapeutic action of D-Asp was partially through regulating functions of NMDARs and mGluR5/mTOR/4E-BP signaling pathways. In conclusion, supplement of D-Asp may benefit for synaptic plasticity and behaviors in Fmr1 KO mice and offer a potential therapeutic strategy for FXS.


Subject(s)
D-Aspartic Acid , Fragile X Syndrome , Mice , Animals , Humans , Fragile X Syndrome/drug therapy , Fragile X Syndrome/metabolism , Learning , Long-Term Potentiation/physiology , Fragile X Mental Retardation Protein/metabolism , Mice, Knockout , Brain/metabolism , Disease Models, Animal , Mice, Inbred C57BL
7.
Phytother Res ; 37(10): 4838-4850, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37458182

ABSTRACT

Diabetic encephalopathy is a common consequence of diabetes mellitus that causes cognitive dysfunction and neuropsychiatric disorders. Praeruptorin C (Pra-C) from the traditional Chinese medicinal herb Peucedanum praeruptorum Dunn. is a potential antioxidant and neuroprotective agent. This study was conducted to investigate the molecular mechanisms underlying the effect of Pra-C on diabetic cognitive impairment. A novel object recognition test and the Morris water maze test were performed to assess the behavioral performance of mice. Electrophysiological recordings were made to monitor synaptic plasticity in the hippocampus. A protein-protein interaction network of putative Pra-C targets was constructed, and molecular docking simulations were performed to predict the potential mechanisms of the action of Pra-C. Protein expression levels were detected by western blotting. Pra-C administration significantly lowered body weight and fasting blood glucose levels and alleviated learning and memory deficits in type 2 diabetic mice. Network pharmacology and molecular docking results suggested that Pra-C affects the PI3K/AKT/GSK3ß signaling pathway. Western blot analysis confirmed significant increases in phosphorylated PI3K, AKT, and GSK3ß levels in vivo and in vitro upon Pra-C administration. Pra-C alleviated cognitive impairment in type 2 diabetic mice by activating PI3K/AKT/GSK3ß pathway.

8.
Mol Pain ; 19: 17448069231177634, 2023.
Article in English | MEDLINE | ID: mdl-37207346

ABSTRACT

Chronic pain, along with comorbid psychiatric disorders, is a common problem worldwide. A growing number of studies have focused on non-opioid-based medicines, and billions of funds have been put into digging new analgesic mechanisms. Peripheral inflammation is one of the critical causes of chronic pain, and drugs with anti-inflammatory effects usually alleviate pain hypersensitivity. Sophoridine (SRI), one of the most abundant alkaloids in Chinese herbs, has been proved to exert antitumor, antivirus and anti-inflammation effects. Here, we evaluated the analgesic effect of SRI in an inflammatory pain mouse model induced by complete Freund's adjuvant (CFA) injection. SRI treatment significantly decreased pro-inflammatory factors release after LPS stimuli in microglia. Three days of SRI treatment relieved CFA-induced mechanical hypersensitivity and anxiety-like behavior, and recovered abnormal neuroplasticity in the anterior cingulate cortex of mice. Therefore, SRI may be a candidate compound for the treatment of chronic inflammatory pain and may serve as a structural basis for the development of new drugs.


Subject(s)
Chronic Pain , Hyperalgesia , Mice , Animals , Hyperalgesia/complications , Hyperalgesia/drug therapy , Hyperalgesia/chemically induced , Freund's Adjuvant/toxicity , Matrines , Chronic Pain/drug therapy , Analgesics/pharmacology , Analgesics/therapeutic use , Anxiety/complications , Anxiety/drug therapy
9.
Mol Neurobiol ; 60(6): 3379-3395, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36854997

ABSTRACT

Fragile X syndrome (FXS) is one of the most common inherited mental retardation diseases and is caused by the loss of fragile X mental retardation protein (FMRP) expression. The metabotropic glutamate receptor (mGluR) theory of FXS states that enhanced mGluR-dependent long-term depression (LTD) due to FMRP loss is involved in aberrant synaptic plasticity and autistic-like behaviors, but little is known about the underlying molecular mechanism. Here, we found that only hippocampal mGluR-LTD was exaggerated in adolescent Fmr1 KO mice, while N-methyl-D-aspartate receptor (NMDAR)-LTD was intact in mice of all ages. This development-dependent alteration was related to the differential expression of caveolin-1 (Cav1), which is essential for caveolae formation. Knockdown of Cav1 restored the enhanced mGluR-LTD in Fmr1 KO mice. Moreover, hippocampal Cav1 expression in Fmr1 KO mice induced excessive endocytosis of the α-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate (AMPA) receptor subunit GluA2. This process relied on mGluR1/5 activation rather than NMDAR. Interference with Cav1 expression reversed these changes. Furthermore, massive cholesterol accumulation contributed to redundant caveolae formation, which provided the platform for mGluR-triggered Cav1 coupling to GluA2. Importantly, injection of the cholesterol scavenger methyl-ß-cyclodextrin (Mß-CD) recovered AMPA receptor trafficking and markedly alleviated hyperactivity, hippocampus-dependent fear memory, and spatial memory defects in Fmr1 KO mice. Together, our findings elucidate the important role of Cav1 in mediating mGluR-LTD enhancement and further inducing AMPA receptor endocytosis and suggest that cholesterol depletion by Mß-CD during caveolae formation may be a novel and safe strategy to treat FXS.


Subject(s)
Fragile X Syndrome , Receptors, Metabotropic Glutamate , Mice , Animals , Mice, Knockout , Caveolin 1/metabolism , Receptors, AMPA/metabolism , Depression , Fragile X Mental Retardation Protein/metabolism , Hippocampus/metabolism , Neuronal Plasticity , Fragile X Syndrome/metabolism , Receptors, Metabotropic Glutamate/metabolism , Cognition , Mice, Inbred C57BL
10.
J Hazard Mater ; 443(Pt B): 130249, 2023 02 05.
Article in English | MEDLINE | ID: mdl-36332276

ABSTRACT

Brain volume decrease in the anterior cingulate cortex (ACC) after lead (Pb) exposure has been linked to persistent impairment of attention behavior. However, the precise structural change and molecular mechanism for the Pb-induced ACC alteration and its contribution to inattention have yet to be fully characterized. The present study determined the role of miRNA regulated synaptic structural and functional impairment in the ACC and its relationship to attention deficit disorder in Pb exposed mice. Results showed that Pb exposure induced presynaptic impairment and structural alterations in the ACC. Furthermore, we screened for critical miRNA targets responsible for the synaptic alteration. We found that miR-130, which regulates presynaptic vesicle releasing protein SNAP-25, was responsible for the presynaptic impairment in the ACC and attention deficits in mice. Blocking miR-130 function reversed the Pb-induced decrease in the expression of its presynaptic target SNAP-25, leading to the redistribution of presynaptic vesicles, as well as improved presynaptic function and attention in Pb exposed mice. We report, for the first time, that miR-130 regulating SNAP-25 mediates Pb-induced presynaptic structural and functional impairment in the ACC along with attention deficit disorder in mice.


Subject(s)
Attention Deficit Disorder with Hyperactivity , MicroRNAs , Animals , Mice , Attention Deficit Disorder with Hyperactivity/metabolism , Cognition , Gyrus Cinguli/metabolism , Lead/toxicity , Lead/metabolism , MicroRNAs/metabolism
11.
Phytother Res ; 36(10): 3932-3948, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35801985

ABSTRACT

Posttraumatic stress disorder (PTSD) is one of the most common psychiatric diseases, which is characterized by the typical symptoms such as re-experience, avoidance, and hyperarousal. However, there are few drugs for PTSD treatment. In this study, conditioned fear and single-prolonged stress were employed to establish PTSD mouse model, and we investigated the effects of Tanshinone IIA (TanIIA), a natural product isolated from traditional Chinese herbal Salvia miltiorrhiza, as well as the underlying mechanisms in mice. The results showed that the double stress exposure induced obvious PTSD-like symptoms, and TanIIA administration significantly decreased freezing time in contextual fear test and relieved anxiety-like behavior in open field and elevated plus maze tests. Moreover, TanIIA increased the spine density and upregulated synaptic plasticity-related proteins as well as activated CREB/BDNF/TrkB signaling pathway in the hippocampus. Blockage of CREB remarkably abolished the effects of TanIIA in PTSD model mice and reversed the upregulations of p-CREB, BDNF, TrkB, and synaptic plasticity-related protein induced by TanIIA. The molecular docking simulation indicated that TanIIA could interact with the CREB-binding protein. These findings indicate that TanIIA ameliorates PTSD-like behaviors in mice by activating the CREB/BDNF/TrkB pathway, which provides a basis for PTSD treatment.


Subject(s)
Biological Products , Brain-Derived Neurotrophic Factor , Abietanes , Animals , Anxiety/drug therapy , Biological Products/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , CREB-Binding Protein/metabolism , CREB-Binding Protein/pharmacology , Fear , Hippocampus/metabolism , Mice , Molecular Docking Simulation , Signal Transduction
12.
Front Endocrinol (Lausanne) ; 13: 887238, 2022.
Article in English | MEDLINE | ID: mdl-35712239

ABSTRACT

Background: Chronic pain is defined as pain that persists typically for a period of over six months. Chronic pain is often accompanied by an anxiety disorder, and these two tend to exacerbate each other. This can make the treatment of these conditions more difficult. Glucose-dependent insulinotropic polypeptide (GIP) is a member of the incretin hormone family and plays a critical role in glucose metabolism. Previous research has demonstrated the multiple roles of GIP in both physiological and pathological processes. In the central nervous system (CNS), studies of GIP are mainly focused on neurodegenerative diseases; hence, little is known about the functions of GIP in chronic pain and pain-related anxiety disorders. Methods: The chronic inflammatory pain model was established by hind paw injection with complete Freund's adjuvant (CFA) in C57BL/6 mice. GIP receptor (GIPR) agonist (D-Ala2-GIP) and antagonist (Pro3-GIP) were given by intraperitoneal injection or anterior cingulate cortex (ACC) local microinjection. Von Frey filaments and radiant heat were employed to assess the mechanical and thermal hypersensitivity. Anxiety-like behaviors were detected by open field and elevated plus maze tests. The underlying mechanisms in the peripheral nervous system and CNS were explored by GIPR shRNA knockdown in the ACC, enzyme-linked immunosorbent assay, western blot analysis, whole-cell patch-clamp recording, immunofluorescence staining and quantitative real-time PCR. Results: In the present study, we found that hind paw injection with CFA induced pain sensitization and anxiety-like behaviors in mice. The expression of GIPR in the ACC was significantly higher in CFA-injected mice. D-Ala2-GIP administration by intraperitoneal or ACC local microinjection produced analgesic and anxiolytic effects; these were blocked by Pro3-GIP and GIPR shRNA knockdown in the ACC. Activation of GIPR inhibited neuroinflammation and activation of microglia, reversed the upregulation of NMDA and AMPA receptors, and suppressed the enhancement of excitatory neurotransmission in the ACC of model mice. Conclusions: GIPR activation was found to produce analgesic and anxiolytic effects, which were partially due to attenuation of neuroinflammation and inhibition of excitatory transmission in the ACC. GIPR may be a suitable target for treatment of chronic inflammatory pain and pain-related anxiety.


Subject(s)
Chronic Pain , Receptors, Gastrointestinal Hormone , Animals , Chronic Pain/drug therapy , Chronic Pain/metabolism , Freund's Adjuvant , Gastric Inhibitory Polypeptide/physiology , Gyrus Cinguli/metabolism , Mice , Mice, Inbred C57BL , RNA, Small Interfering , Receptors, Gastrointestinal Hormone/agonists , Receptors, Gastrointestinal Hormone/antagonists & inhibitors , Receptors, Gastrointestinal Hormone/metabolism
13.
Pharmacol Ther ; 240: 108229, 2022 12.
Article in English | MEDLINE | ID: mdl-35700828

ABSTRACT

Cyclin-dependent kinase (CDK) 7 is best characterized for the ability to regulate biological processes, including the cell cycle and gene transcription. Abnormal CDK7 activity is observed in various tumours and represents a driving force for tumourigenesis. Therefore, CDK7 may be an appealing target for cancer treatment. Whereas, the enthusiasm for CDK7-targeted therapeutic strategy is mitigated due to the widely possessed belief that this protein is essential for normal cells. Indeed, the fact confronts the consensus. This is the first review to introduce the role of CDK7 in pan-cancers via a combined analysis of comprehensive gene information and (pre)clinical research results. We also discuss the recent advances in protein structure and summarize the understanding of mechanisms underlying CDK7 function. These endeavours highlight the pivotal roles of CDK7 in tumours and may contribute to the development of effective CDK7 inhibitors within the strategy of structure-based drug discovery for cancer therapy.


Subject(s)
Neoplasms , Humans , Cell Cycle , Neoplasms/metabolism , Drug Discovery
14.
Mol Neurobiol ; 58(10): 5272-5288, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34278533

ABSTRACT

Sleep deprivation (SD) leads to cognitive impairment due to neuroinflammation associated with impaired hippocampal neuronal plasticity and memory processes. Liver X receptors (LXRs), including LXRα and LXRß isoforms, are crucial for synaptic plasticity and neuroinflammation. However, the potential roles of LXRs in the pathogenesis of cognitive impairment induced by SD remain unclear. We revealed that SD resulted in LXRß reduction in the hippocampus, which was associated with upregulated expression of high mobility group box 1 (HMGB1)/toll-like receptor 4 (TLR4)/NF-κB p65, and knockdown of hippocampal LXRß by shRNA (shLXRß) led to cognitive impairment. GW3965, a dual agonist for both LXRα and LXRß, ameliorated SD-induced cognitive impairment by inhibiting microglia activation, suppressing HMGB1/TLR4/NF-κB p65 pathway, and ultimately affecting the hippocampal expression of inflammatory cytokines in SD mice. LXRß knockdown by shLXRß abrogated the GW3965-mediated inhibition of the HMGB1/TLR4/NF-κB p65 pathway, therefore, abolishing the cognitive improvement. Moreover, inhibition of HMGB1 by glycyrrhizin (GLY) synergistic promoted GW3965-mediated anti-inflammation in activated microglia after lipopolysaccharide (LPS)/ATP stimulation and facilitated the cognitive improvement after GW administration by activating LXRß. All the data suggested that GW3965 ameliorated impaired cognition in SD mice by suppressing the HMGB1/TLR4/NF-κB p65 pathway followed LXRß activation. This study correlates a deficit of LXRß in cognitive dysfunction in SD associated with HMGB1 inflammatory pathway in hippocampus, and LXRs may serve as a potential therapeutic target for cognitive impairment with anti-inflammation.


Subject(s)
Cognitive Dysfunction/metabolism , Hippocampus/metabolism , Liver X Receptors/metabolism , Neuroinflammatory Diseases/metabolism , Sleep Deprivation/metabolism , Animals , Anti-Inflammatory Agents/administration & dosage , Benzoates/administration & dosage , Benzylamines/administration & dosage , Cognitive Dysfunction/drug therapy , Dose-Response Relationship, Drug , Glycyrrhizic Acid/administration & dosage , Hippocampus/drug effects , Liver X Receptors/agonists , Male , Mice , Mice, Inbred C57BL , Microinjections , Neuroinflammatory Diseases/drug therapy , Random Allocation , Sleep Deprivation/drug therapy
15.
Phytother Res ; 35(7): 3936-3944, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33856723

ABSTRACT

Anxiety disorders are a common frequently psychiatric symptom in patients that lead to disruption of daily life. Scutellarin (Scu) is the main component of Erigeron breviscapus, which has been used as a neuroprotective agent against glutamate-induced excitotoxicity. However, the potential effect of Scu on the stress-related neuropsychological disorders has not been clarified. In this study, Anxiety-like behavior was induced by acute restraint stress in mice. Scu were injected intraperitoneally (twice daily, 3 days). Results showed that Scu exhibited good protective activity on mice by decreasing transmitter release levels. Restraint stress caused significant anxiety like behavior in mice. Treatment of Scu could significantly improve the moving time of open arms in Elevated Plus Maze and central time on open field test. Scu treatment suppressed action potential firing frequency, restored excessive presynaptic quantal release, and down-regulated glutamatergic receptor expression levels in the prefrontal cortex (PFC) of stressed mice. GABAA Rα1 and GABAA γ2 expression in the brain PFC tissues of mice were nearly abrogated by Scu treatment. In stress-induced anxiety mice, stress can increase the frequency of mini excitatory postsynaptic currents (mEPSC), which can be reversed by Scu treatment. Therefore, Scu has a potent anxiolytic activity and may be valuable for the treatment of stress-induced anxiety disorders.


Subject(s)
Anxiety , Apigenin , Glucuronates , Neurotransmitter Agents/physiology , Animals , Anxiety/drug therapy , Apigenin/pharmacology , Glucuronates/pharmacology , Mice
16.
Mol Pain ; 17: 1744806921990934, 2021.
Article in English | MEDLINE | ID: mdl-33590786

ABSTRACT

Chronic pain is highly prevalent worldwide and severely affects daily lives of patients and family members. Praeruptorin C (Pra-C) is a main active ingredient derived from Peucedanum praeruptorum Dunn, traditionally used as antibechic, anti-bronchitis and anti-hypertension drug. Here, we evaluated the effects of Pra-C in a chronic inflammatory pain mouse model induced by complete Freund's adjuvant (CFA) injection. Pra-C (3 mg/kg) treatment for just 3 days after CFA challenge relieved CFA-induced mechanical allodynia and hindpaw edema in mice. In the anterior cingulate cortex (ACC), Pra-C treatment inhibited microglia activation and reduced levels of proinflammatory cytokines, TNF-α and IL-1ß, and suppressed upregulation of glutamate receptors caused by CFA injection. In addition, Pra-C attenuated neuronal hyperexcitability in ACC of CFA-injected mice. In vitro studies confirmed the analgesic effect of Pra-C was due to its inhibitory ability on microglial activation. In conclusion, Pra-C administration had a certain effect on relieving chronic pain by inhibiting microglial activation, attenuating proinflammatory cytokine releasing and regulating excitatory synaptic proteins in the ACC of the CFA-injected mice.


Subject(s)
Analgesics/pharmacology , Coumarins/pharmacology , Gyrus Cinguli/pathology , Microglia/pathology , Analgesics/therapeutic use , Animals , Cell Line , Chronic Pain/complications , Chronic Pain/drug therapy , Chronic Pain/physiopathology , Coumarins/chemistry , Coumarins/therapeutic use , Cytokines/metabolism , Disease Models, Animal , Edema/complications , Edema/pathology , Edema/physiopathology , Freund's Adjuvant , Hyperalgesia/complications , Hyperalgesia/pathology , Hyperalgesia/physiopathology , Inflammation/complications , Inflammation/drug therapy , Inflammation Mediators/metabolism , Male , Mice, Inbred C57BL , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Synapses/drug effects , Synapses/metabolism , Synaptic Transmission/drug effects , Up-Regulation/drug effects
17.
Psychopharmacology (Berl) ; 237(10): 3201-3213, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32671421

ABSTRACT

RATIONAL: Minocycline is a second-generation, semi-synthetic tetracycline, and has broad spectrum-antibacterial activity. Interestingly, many studies have demonstrated that minocycline is beneficial for depression, which may be due to its effects on neuroinflammation modulation. Recently, gut microbiota imbalance has been found in depression patient and animal models. OBJECTIVES: Based on the fact of minocycline usually acting as an antibiotic and the relationship between depression, gut microbiota, and neuroinflammation, we designed this study to detect the effects of chronic minocycline treatment on antidepression, neuroinflammation, and gut microbiota modulation. RESULTS: Our results showed that minocycline treatment for 4 weeks, not acute treatment, exerted antidepressant effect in mice exposed to unpredictable chronic mild stress (CUMS). Further results suggested that chronic minocycline treatment inhibited neuroinflammation of hippocampus and altered species abundance and metabolites of gut microbiota. Meantime, we found that chronic minocycline treatment ameliorated intestinal barrier disruption and reduced the bacteriological indexes, such as diamine oxidase, C-reaction protein, and endotoxin in peripheral blood of CUMS mice. CONCLUSIONS: To sum up, our findings confirm that chronic minocycline treatment exerts the antidepressant effect, inhibits neuroinflammation, and modulates gut microbiota. All of these imply that the antidepressant mechanism of chronic minocycline treatment is maybe due to the combined action of neuroinflammation and gut microbiota modulation, which need further prospective studies.


Subject(s)
Antidepressive Agents/administration & dosage , Depression/drug therapy , Gastrointestinal Microbiome/drug effects , Inflammation Mediators/antagonists & inhibitors , Minocycline/administration & dosage , Animals , Depression/metabolism , Depression/psychology , Drug Administration Schedule , Gastrointestinal Microbiome/physiology , Hippocampus/drug effects , Hippocampus/metabolism , Inflammation Mediators/metabolism , Male , Metabolomics/methods , Mice , Mice, Inbred C57BL , Prospective Studies , Treatment Outcome
18.
Brain Behav Immun ; 89: 245-255, 2020 10.
Article in English | MEDLINE | ID: mdl-32621847

ABSTRACT

Microglia are the resident immune cells of the center nervous system and participate in various neurological diseases. Here we determined the function of microglia in epileptogenesis using microglial ablation approaches. Three different microglia-specific genetic tools were used, CX3CR1CreER/+:R26iDTA/+, CX3CR1CreER/+:R26iDTR/+, and CX3CR1CreER/+:Csf1rFlox/Flox mice. We found that microglial depletion led to worse kainic acid (KA)-induced status epilepticus, higher mortality rate, and increased neuronal degeneration in the hippocampus. In KA-induced chronic spontaneous recurrent seizures, microglial depletion increased seizure frequency, interictal spiking, and seizure duration. Therefore, microglial depletion aggravates the severity of KA-induced acute and chronic seizures. Interestingly, microglial repopulation reversed the effects of depletion upon KA-induced status epilepticus. Our results demonstrate a beneficial role of microglia in suppressing both acute and chronic seizures, suggesting that microglia are a potential therapeutic target for the management of epilepsy.


Subject(s)
Microglia , Status Epilepticus , Animals , Disease Models, Animal , Hippocampus , Kainic Acid , Mice , Mice, Transgenic , Seizures
19.
Neurotox Res ; 38(4): 979-991, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32367473

ABSTRACT

Anxiety leads to a global decline in quality of life and increase in social burden. However, treatments are limited, because the molecular mechanisms underlying complex emotional disorders are poorly understood. We explored the anxiolytic effects of 8-O-acetyl shanzhiside methylester (8-OaS), an active component in Lamiophlomis rotata (L. rotata; Benth.) or Kudo, a traditional herb that has been shown to be effective in the clinical treatment of chronic pain syndromes in China. Two mouse anxiety models were used: forced swimming stress (FSS)-induced anxiety and complete Freund's adjuvant (CFA)-induced chronic inflammatory pain. All animal behaviors were analyzed on the elevated plus maze and in the open-field test. 8-OaS significantly ameliorated anxiety-like behaviors in both anxiety models and inhibited the translation enhancement of GluN2A, GluN2B, and PSD95. Moreover, a reduction in GABA receptors disrupted the excitatory/inhibitory (E/I) balance in the basolateral amygdala (BLA), indicated by increased excitatory and decreased inhibitory presynaptic release. 8-OaS also blocked microglia activation and reduced the phosphorylation of p38, c-Jun N-terminal kinase (JNK), NF-κB p65, and tumor necrosis factor alpha (TNF-α) in the BLA of anxiety mice. 8-OaS exhibits obvious anxiolytic effects by regulating the excitatory/inhibitory (E/I) synaptic transmission and attenuating inflammatory responses in the BLA.


Subject(s)
Anti-Anxiety Agents/therapeutic use , Anxiety/metabolism , Anxiety/prevention & control , Glucosides/therapeutic use , Inflammation Mediators/antagonists & inhibitors , Inflammation Mediators/metabolism , Pyrans/therapeutic use , Acute Disease , Animals , Anti-Anxiety Agents/pharmacology , Anxiety/chemically induced , Chronic Disease , Dose-Response Relationship, Drug , Excitatory Amino Acid Agonists/metabolism , Freund's Adjuvant/toxicity , Glucosides/pharmacology , Glutamic Acid/metabolism , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/physiology , Male , Mice , Mice, Inbred C57BL , Pyrans/pharmacology , gamma-Aminobutyric Acid/metabolism
20.
Mol Brain ; 13(1): 15, 2020 02 04.
Article in English | MEDLINE | ID: mdl-32019580

ABSTRACT

Anxiety disorder is highly prevalent worldwide and represents a chronic and functionally disabling condition, with high levels of psychological stress characterized by cognitive and physiological symptoms. Scopoletin (SP), a main active compound in Angelica dahurica, is traditionally used for the treatment of headache, rhinitis, pain, and other conditions. Here, we evaluated the effects of SP in a mouse model of complete Freund's adjuvant (CFA)-induced chronic inflammation anxiety. SP (2.0, 10.0, 50.0 mg/kg) administration for 2 weeks dose-dependently ameliorated CFA-induced anxiety-like behaviors in the open field test and elevated plus maze test. Moreover, we found that SP treatment inhibited microglia activation and decreased both peripheral and central IL-1ß, IL-6, and TNF-α levels in a dose-dependent manner. Additionally, the imbalance in excitatory/inhibitory receptors and neurotransmitters in the basolateral nucleus after CFA injection was also modulated by SP administration. Our findings indicate that the inhibition of the nuclear factor-kappa B and mitogen-activated protein kinase signaling pathways involving anti-inflammatory activities and regulation of the excitatory/inhibitory balance can be attributed to the anxiolytic effects of SP. Moreover, our molecular docking analyses show that SP also has good affinity for gamma-aminobutyric acid (GABA) transaminase and GABAA receptors. Therefore, these results suggest that SP could be a candidate compound for anxiolytic therapy and for use as a structural base for developing new drugs.


Subject(s)
Angelica/chemistry , Anti-Anxiety Agents/therapeutic use , Anxiety/drug therapy , Drugs, Chinese Herbal/therapeutic use , GABA-A Receptor Agonists/therapeutic use , Phytotherapy , Scopoletin/therapeutic use , 4-Aminobutyrate Transaminase/antagonists & inhibitors , Amygdala/chemistry , Amygdala/drug effects , Animals , Anti-Anxiety Agents/pharmacology , Anxiety/etiology , Cytokines/metabolism , Disease Models, Animal , Drugs, Chinese Herbal/pharmacology , Elevated Plus Maze Test , Freund's Adjuvant/toxicity , GABA-A Receptor Agonists/pharmacology , Inflammation/chemically induced , Inflammation/psychology , MAP Kinase Signaling System/drug effects , Male , Mice , Mice, Inbred C57BL , Microglia/drug effects , Models, Molecular , Molecular Docking Simulation , NF-kappa B/metabolism , Neurotransmitter Agents/metabolism , Open Field Test , Protein Conformation , Receptors, Neurotransmitter/metabolism , Scopoletin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...