Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
1.
Crit Rev Food Sci Nutr ; : 1-22, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38779723

ABSTRACT

A large and growing body of literature has investigated the broad antibacterial spectrum and strong synergistic antimicrobial activity of medium chain monoglycerides (MCMs) have been widely investigated. Recently, more and more researches have focused on the regulation of MCMs on metabolic health and gut microbiota both in vivo and in vitro. The current review summarizes the digestion, absorption and metabolism of MCMs. Subsequently, it focuses on the functional and nutritional properties of MCMs, including the antibacterial and antiviral characteristics, the modulation of metabolic balance, the regulation of gut microbiota, and the improvement in intestinal health. Additionally, we discuss the most recent developments and application of MCMs using nanotechnologies in food industry, poultry and pharmaceutical industry. Additionally, we analyze recent application examples of MCMs and their nanotechnology formation used in food. The development of nanotechnology platforms facilitating molecular encapsulation and functional presentation contribute to the application of hydrophobic fatty acids and monoglycerides in food preservation and their antibacterial effectiveness. This study emphasizes the metabolic mechanisms and biological activity of MCMs by summarizing the prevailing state of knowledge on this topic, as well as providing insights into prospective techniques for developing the beneficial applications of MCMs to realize the industrialized production.

2.
Cell Immunol ; 401-402: 104838, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38810591

ABSTRACT

BACKGROUND: The NOD-like receptor protein 3 (NLRP3) mediated pyroptosis of macrophages is closely associated with liver ischemia reperfusion injury (IRI). As a covalent inhibitor of NLRP3, Oridonin (Ori), has strong anti-inflammasome effect, but its effect and mechanisms for liver IRI are still unknown. METHODS: Mice and liver macrophages were treated with Ori, respectively. Co-IP and LC-MS/MS analysis of the interaction between PKM2 and NLRP3 in macrophages. Liver damage was detected using H&E staining. Pyroptosis was detected by WB, TEM, and ELISA. RESULTS: Ori ameliorated liver macrophage pyroptosis and liver IRI. Mechanistically, Ori inhibited the interaction between pyruvate kinase M2 isoform (PKM2) and NLRP3 in hypoxia/reoxygenation(H/R)-induced macrophages, while the inhibition of PKM2/NLRP3 reduced liver macrophage pyroptosis and liver IRI. CONCLUSION: Ori exerted protective effects on liver IRI via suppressing PKM2/NLRP3-mediated liver macrophage pyroptosis, which might become a potential therapeutic target in the clinic.

3.
Curr Med Imaging ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38532604

ABSTRACT

OBJECTIVE: The primary objective of this comparative investigation was to examine the qualitative attributes of image reconstructions utilizing two distinct algorithms, namely OSEM and HYPER Iterative, in total-body 18F- FDG PET/CT under various acquisition durations and injection activities. METHODS: An initial assessment was executed using a NEMA phantom to compare image quality engendered by OSEM and HYPER Iterative algorithms. Parameters such as BV, COV, and CRC were meticulously evaluated. Subsequently, a prospective cohort study was conducted on 50 patients, employing both reconstruction algorithms. The study was compartmentalized into distinct acquisition time and dosage groups. Lesions were further categorized into three size-based groups. Quantifiable metrics including SD of noise, SUVmax, SNR, and TBR were computed. Additionally, the differences in values, namely ΔSUVmax, ΔTBR, %ΔSUVmax, %ΔSD, and %ΔSNR, between OSEM and HYPER Iterative algorithms were also calculated. RESULTS: The HYPER Iterative algorithm showed reduced BV and COV compared to OSEM in the phantom study, with constant acquisition time. In the clinical study, lesion SUVmax, TBR, and SNR were significantly elevated in images reconstructed using the HYPER Iterative algorithm in comparison to those generated by OSEM (p < 0.001). Furthermore, an amplified increase in SUVmax was predominantly discernible in lesions with dimensions less than 10 mm. Metrics such as %ΔSNR and %ΔSD in HYPER Iterative exhibited improvements correlating with reduced acquisition times and dosages, wherein a more pronounced degree of enhancement was observable in both ΔSUVmax and ΔTBR. CONCLUSION: The HYPER Iterative algorithm significantly improves SUVmax and reduces noise level, with particular efficacy in lesions measuring ≤ 10 mm and under conditions of abbreviated acquisition times and lower dosages.

4.
Mol Nutr Food Res ; 68(7): e2300749, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38511225

ABSTRACT

SCOPE: Palmitoleic acid (POA) is an omega-7 monounsaturated fatty acid that has been suggested to improve metabolic disorders. However, it remains unclear whether gut microbiota plays a role in the amelioration of metabolic disorders by POA. This study aims to investigate the regulation of POA on metabolism, as well as systemic inflammation in HFD-fed mice from the perspective of serum metabolome and gut microbiome. METHODS AND RESULTS: Thirty-six C57BL/6 male mice are randomly assigned to either a normal chow diet containing 1.9% w/w lard or an HFD containing 20.68% w/w lard or 20.68% w/w sea buckthorn pulp oil for 16 weeks. The study finds that POA significantly attenuated hyperlipidemia, insulin resistance, and inflammation in HFD-fed mice. POA supplementation significantly alters the composition of serum metabolites, particularly lipid metabolites in the glycerophospholipid metabolism pathway. POA obviously increases the abundance of Bifidobacterium and decreases the abundance of Allobaculum. Importantly, the study finds that glycerophosphocholine mediates the effect of Bifidobacterium on LDL-C, sphingomyelin mediates the effect of Bifidobacterium on IL-6, and maslinic acid mediates the effect of Allobaculum on IL-6. CONCLUSION: The results suggest that exogenous POA can improve metabolic disorders and inflammation in HFD-fed mice, potentially by modulating the serum metabolome and gut microbiome.


Subject(s)
Gastrointestinal Microbiome , Metabolic Diseases , Male , Animals , Mice , Interleukin-6 , Mice, Inbred C57BL , Inflammation/drug therapy , Metabolic Diseases/drug therapy , Fatty Acids, Monounsaturated/pharmacology , Firmicutes , Diet, High-Fat/adverse effects
5.
Foods ; 13(5)2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38472812

ABSTRACT

The altered circulating bile acids (BAs) modulate gut microbiota, energy metabolism and various physiological functions. BA profiles in liver, serum, ileum and feces of HFD-fed mice were analyzed with normal chow diet (NCD)-fed mice after 16-week feeding. Furthermore, gut microbiota was analyzed and its correlation analysis with BA was performed. The result showed that long-term HFD feeding significantly decreased hepatic and serum BA levels, mainly attributed to the inhibition of hepatic BA synthesis and the reduced reabsorption efficiency of BAs in enterohepatic circulation. It also significantly impaired glucose and lipid homeostasis and gut microbiota in mice. We found significantly higher bile salt hydrolase activity in ileal microbes and a higher ratio of free BAs to conjugated BA content in ileal contents in HFD groups compared with NCD group mice, which might account for the activated intestinal farnesoid X receptor signaling on liver BA synthesis inhibition and reduced ileal reabsorption. The decreased circulating BAs were associated with the dysregulation of the lipid metabolism according to the decreased TGR5 signaling in the ileum and BAT. In addition, it is astonishing to find extremely high percentages of taurocholate and 12-OH BAs in liver and serum BA profiles of both groups, which was mainly attributed to the high substrate selectivity for 12-OH BAs of the intestinal BAs transporter during the ileal reabsorption of enterohepatic circulation. This study revealed a significant effect of long-term HFD feeding on the decreased circulating BA pool in mice, which impaired lipid homeostasis and gut microbiota, and collectively resulted in metabolic disorders and obesity.

6.
J Am Chem Soc ; 146(3): 2024-2032, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38206050

ABSTRACT

The CO2 hydrogenation reaction to produce methanol holds great significance as it contributes to achieving a CO2-neutral economy. Previous research identified isolated Cu+ species doping the oxide surface of a Cu-MgO-Al2O3-mixed oxide derived from a hydrotalcite precursor as the active site in CO2 hydrogenation, stabilizing monodentate formate species as a crucial intermediate in methanol synthesis. In this work, we present a molecular-level understanding of how surface water and hydroxyl groups play a crucial role in facilitating spontaneous CO2 activation at Cu+ sites and the formation of monodentate formate species. Computational evidence has been experimentally validated by comparing the catalytic performance of the Cu-MgO-Al2O3 catalyst with hydroxyl groups against that of its hydrophobic counterpart, where hydroxyl groups are blocked using an esterification method. Our work highlights the synergistic effect between doped Cu+ ions and adjacent hydroxyl groups, both of which serve as key parameters in regulating methanol production via CO2 hydrogenation. By elucidating the specific roles of these components, we contribute to advancing our understanding of the underlying mechanisms and provide valuable insights for optimizing methanol synthesis processes.

7.
Food Chem Toxicol ; 184: 114443, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38211766

ABSTRACT

Potassium sorbate (PS) is a widely used food preservative in the field of food industry. However, the effects of continuous intake and washout period of PS on host health are still unclear. In this study, to investigate long-term effect and after-effect of different concentrations and time points of PS, healthy mice were orally exposed to 150 mg/kg, 500 mg/kg and 1000 mg/kg of PS for 10 weeks, and washout treatment for another 5 weeks, respectively. The results indicated that PS intake for 10 weeks had no obvious effects on organs and adipose tissue, nor did it noteworthily interfere with glucolipid metabolism in the serum. However, it caused inflammatory cell infiltration in the liver, increased serum interleukin (IL)-1ß level, changed abundances of gut microbiota but failed to promote the production of short chain fatty acids in the gut. After washout period for 5 weeks, liver inflammation and IL-1ß level were decreased, and gut environment developed towards a healthier condition. Specifically, PS washout significantly increased abundance of Lachnospiraceae_NK4A136_group and the production of isobutyric acid. This study confirmed washout period eliminated negative effects from continuous intake of PS, which provided positive evidence for its safety.


Subject(s)
Gastrointestinal Microbiome , Sorbic Acid , Animals , Mice , Sorbic Acid/pharmacology , Inflammation/metabolism , Liver , Food Preservatives/pharmacology , Mice, Inbred C57BL
8.
Nat Prod Res ; : 1-8, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38293732

ABSTRACT

Imperata cylindrica (L.) P. Beauv. is an invasive species widely used in treatment of several diseases associated with pain and inflammation in different countries including Madagascar. This work aims to report the isolation of the antioxidant, analgesic and anti-nflammatory compounds from the methanol extract of I. cylindrica. The bio-guided method was used to isolate its bioactive compounds by combining chromatographic methods, writhing test in mice and antioxidant assays. Stigmast-4-en-3-one was isolated as one among the compounds responsible for the analgesic and anti-inflammatory properties and isovanillin as one among the antioxidant compounds from the extract. Stigmast-4-en-3-one showed a good oral pharmacokinetic profile and good binding affinities with some pro-inflammatory targets. It did not show any mutagenic effect, nor a carcinogenic one and had a low risk to be a cardiotoxic agent. All of our results provide scientific justification for its traditional medicinal use in the management of pain and inflammatory related diseases.

9.
Food Funct ; 15(1): 310-325, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38086666

ABSTRACT

Constipation is a prevalent gastrointestinal (GI) problem affecting a large number of individuals. This study aimed to investigate peristalsis-promoting potential characteristics of Ligilactobacillus acidipiscis YJ5 and the underlying molecular mechanism. The study demonstrated the relieving effect of L. acidipiscis YJ5 on constipation in both zebrafish and mouse models. L. acidipiscis YJ5 intervention significantly increased intestinal peristalsis by reducing the peak time and increasing the fluorescence disappearance rate in the zebrafish model. In the mouse model, the symptoms of constipation relief induced by L. acidipiscis YJ5 included a shortened first black stool time, an increased number of defecation particles, an accelerated propulsion rate of the small intestine, and an increase in fecal water content. L. acidipiscis YJ5 was found to reduce the expression of colonic aquaporins to normalize the colonic water transport system of constipated mice. Additionally, L. acidipiscis YJ5 reversed loperamide-induced morphological damage in the ileum and colon and increased the colonic mucosal barrier. The results of the 16S rRNA gene analysis indicated that L. acidipiscis YJ5 could reverse the structure of gut microbiota to a near-normal group, including levels of ß-diversity, phylum, family, and genus. Furthermore, the fermentation supernatant of L. acidipiscis YJ5 was shown to relieve constipation, and metabolomics analysis revealed that these positive effects were related to its metabolites like malic acid and heliangin.


Subject(s)
Gastrointestinal Microbiome , Zebrafish , Mice , Animals , RNA, Ribosomal, 16S/genetics , Constipation/drug therapy , Constipation/chemically induced , Water/pharmacology
10.
Mol Nutr Food Res ; 68(2): e2300535, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38039428

ABSTRACT

SCOPE: Butyric acid (C4) and lauric acid (C12) are recognized as functional fatty acids, while the health benefits of the structural lipids they constitute remain unclear. METHODS AND RESULTS: In this study, lauric acid-butyric structural lipid (SLBL ) is synthesized through ultrasound-assisted enzyme-catalyzed acidolysis and its health benefits are evaluated in a high-fat diet-induced obesity mouse model. SLBL and its physical mixture (MLBL ) do not significantly inhibit obesity in mice. However, SLBL treatment increases the ratio of n3/n6 fatty acids in the liver and improves obesity-induced hepatic lipid metabolism disorders. Furthermore, the expression of liver pro-inflammatory cytokines (interleukin [IL]-6, IL-1ß, TNF-α) are significantly suppressed by SLBL , while the expression of anti-inflammatory cytokine (IL-10) is increased. Moreover, SLBL ameliorates the dysbiosis of small intestinal microbes induced by high-fat diet and regulates microbial community structure to be close to the control group. Especially, SLBL significantly alleviates the high-fat diet-induced decrease in Dubosiella and Bifidobacterium abundance. Correlation analysis reveals that SLBL treatment increases the abundance of microorganisms with potential anti-inflammatory function and decreases the abundance of potentially pathogenic bacteria. CONCLUSION: In all, small intestinal microbes may be a significant bridge for the positive anti-inflammatory effects of SLBL , while the exact mechanism remains to be clarified.


Subject(s)
Gastrointestinal Microbiome , Animals , Mice , Inflammation/metabolism , Obesity/metabolism , Diet, High-Fat/adverse effects , Liver/metabolism , Fatty Acids/metabolism , Anti-Inflammatory Agents/pharmacology , Cytokines/metabolism , Lauric Acids/pharmacology , Mice, Inbred C57BL , Lipid Metabolism
11.
Food Funct ; 14(22): 10188-10203, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37909356

ABSTRACT

Sea cucumber peptides (SCPs) have been proven to have many active functions; however, their impact on testosterone synthesis and the corresponding mechanism are not yet clear. This study attempts to explore the effects of SCPs on sex hormone regulation in acute exhaustive swimming (AES) male mice and the possible mechanisms. In the present study, SCP intervention significantly prolonged exhaustive swimming time and reduced exercise metabolite accumulation. The reproductive ability-related parameters including penile index, mating ability, testicular morphology, and sperm storage were dramatically improved by SCP intervention. Notably, SCPs markedly reversed the AES-induced decrease in serum testosterone (T), estradiol (E2), and follicle-stimulating hormone (FSH) levels. Moreover, treatment with a high dose of SCP (0.6 mg per g bw) significantly enhanced the expression of testosterone synthesis-related proteins in testis, meanwhile markedly increasing the gene expression of StAR, Hsd17b3, Hsd17b2, Ldlr, and Cyp19a1. Serum metabolomics results indicated that SCP intervention notably upregulated the expression of 1-stearoyl-2-arachidonoyl-sn-glycerol but downregulated the concentrations of succinate and DL-lactate. Furthermore, serum metabolomics combined with testicular transcriptome, western blot, and correlation analyses demonstrated that SCPs may regulate testosterone synthesis via the Ca2+/PKA signaling pathway. This study indicated that the SCP could be a potential dietary supplement to improve the symptoms of decreased sex hormones related to exercise fatigue.


Subject(s)
Follicle Stimulating Hormone , Sea Cucumbers , Mice , Male , Animals , Sea Cucumbers/metabolism , Swimming , Semen/metabolism , Testis/metabolism , Testosterone , Gonadal Steroid Hormones , Signal Transduction
12.
Foods ; 12(22)2023 Nov 10.
Article in English | MEDLINE | ID: mdl-38002138

ABSTRACT

Sodium benzoate (SB) is a common food preservative widely used in the food industry. However, the effects of SB intake on host health at different stages were still unclear. Hence, we investigated the impact of SB with three concentrations (150 mg/kg, 500 mg/kg and 1000 mg/kg) and at three stages (intake for 5-weeks, intake for 10-weeks and removal for 5 weeks) on host health in normal mice. The results showed that SB intake for 5 weeks slightly changed gut microbiota composition, but it significantly increased TG (only 150 mg/kg and 1000 mg/kg) and blood glucose levels (only 500 mg/kg) and promoted the secretion of interleukin (IL)-1ß and IL-6 (p < 0.01). However, SB intake for 10 weeks mostly maintained normal glucolipid metabolism; although, IL-1ß (p < 0.01) and IL-6 (p < 0.05) levels were also significantly increased and positively regulated the gut microbiota by significantly increasing the relative abundance of Lactobacillus and significantly decreasing the relative abundance of Ileibacterium. Meanwhile, the safety of SB for host metabolism and gut microbiota was also confirmed via a fecal microbiota transplantation experiment. In addition, we found that SB removal after 10 weeks of intake significantly increased the levels of blood glucose, insulin and HOMA-IR index, which might be attributed to gut microbiota dysbiosis. Mechanistically, these positive effects and negative effects had no close relationship with the concentration of short-chain fatty acids in the gut, which might be associated with metabolites of SB or special bacterial strains. In short, this work provided positive evidence for the safety of SB consumption within the recommended range.

13.
Food Res Int ; 174(Pt 1): 113507, 2023 12.
Article in English | MEDLINE | ID: mdl-37986503

ABSTRACT

Coffee is popular worldwide and its consumption is increasing in recent years. Although mass spectrometry-based lipidomics approaches have been prevalent, their application in studies related to detailed information and dynamic changes in lipid composition during coffee bean roasting is still limited. The aim of this study was to investigate the dynamic changes in coffee bean lipids during the roasting process. The lipid classes and lipid molecular species in coffee beans were characterized by lipidomic analysis combined with chemometrics. A total of 12 lipid classes and 105 lipid molecular species were identified and quantified. Triacylglycerols (TAG) was the most abundant lipid class in both green beans and roasted beans. The content of phosphatidylethanolamine (PE) and lysophosphatidylethanolamine (LPE) in green beans was obviously higher than that in roasted beans. Other phospholipids, such as phosphatidylinositol (PI), lysophosphatidylinositol (LPI), phosphatidylcholine (PC), lysophophatidylcholine (LPC) and phosphatidic acid (PA), showed a tendency to increase at the beginning of roasting, then decreased gradually. Several differential lipid molecule species, for instance, PE (16:0_18:2), PC (18:2_18:2) were significantly down-regulated, and PI (18:1_18:2) was significantly up-regulated. This study provided a scientific basis for the change of coffee bean lipids during the roasting process.


Subject(s)
Coffea , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid , Seeds , Phospholipids
14.
Nat Commun ; 14(1): 7174, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37935688

ABSTRACT

Zeolites containing Rh single sites stabilized by phosphorous were prepared through a one-pot synthesis method and are shown to have superior activity and selectivity for ethylene hydroformylation at low temperature (50 °C). Catalytic activity is ascribed to confined Rh2O3 clusters in the zeolite which evolve under reaction conditions into single Rh3+ sites. These Rh3+ sites are effectively stabilized in a Rh-(O)-P structure by using tetraethylphosphonium hydroxide as a template, which generates in situ phosphate species after H2 activation. In contrast to Rh2O3, confined Rh0 clusters appear less active in propanal production and ultimately transform into Rh(I)(CO)2 under similar reaction conditions. As a result, we show that it is possible to reduce the temperature of ethylene hydroformylation with a solid catalyst down to 50 °C, with good activity and high selectivity, by controlling the electronic and morphological properties of Rh species and the reaction conditions.

15.
Nucl Med Commun ; 44(12): 1176-1183, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37901913

ABSTRACT

OBJECTIVE: The purpose of the study was to evaluate the routine clinical application of total-body PET with quarter-dose 18 F-FDG. METHODS: The contrast recovery coefficient (CRC) and coefficient of variation (COV) were evaluated among full-, half-, and quarter-dose groups with an acquisition duration of 10-, 5-, 3-, and 1-min in the NEMA (IQ) phantom test. Fifty patients undergoing total-body PET/CT with quarter-dose (0.925MBq/kg) of 18 F-FDG were included in the prospective study. The acquisition time was 10 min, divided into duration groups of 5-, 3-, and 1-min, referred to as G10, G5, G3, and G1. Visual scores were assessed based on overall visual assessment, noise scoring, and lesion conspicuity. Lesion SUV max and TBR were evaluated in semi-quantitative analysis. G10 was used as the gold reference to evaluate lesion detectability. RESULTS: In the phantom study, the COV value of the images with quarter-dose 18 F-FDG and 10-min acquisition time was 11.52%. For spheres with 10 mm diameter, the CRC of quarter-dose PET images was relatively stable compared to that of full-dose groups with all acquisition durations. In the human study, the visual score in G10, G5, and G3 was significantly higher than that in G1. The differences in lesion SUV max and TBR for G1-G10 were significantly higher than that for G5-G10 and G3-G10. All lesions in G10 could be identified in G5 and G3. CONCLUSION: The phantom and human findings demonstrated the feasibility of quarter-dose 18 F-FDG PET with 3-min acquisition time, which can maintain image quality with reduced radiation dose.


Subject(s)
Fluorodeoxyglucose F18 , Positron Emission Tomography Computed Tomography , Humans , Prospective Studies , Time Factors , Phantoms, Imaging , Positron-Emission Tomography/methods
17.
Eur J Nucl Med Mol Imaging ; 51(1): 81-92, 2023 12.
Article in English | MEDLINE | ID: mdl-37691022

ABSTRACT

PURPOSE: PET has been demonstrated to be sensitive for detecting active inflammation in Takayasu's arteritis (TAK) patients, but semi-quantitative-based assessment may be susceptible to various biological and technical factors. Absolute quantification via dynamic PET (dPET) may provide a more reliable and quantitative assessment of TAK-active arteries. The purpose of this study was to investigate the feasibility and efficacy of dPET in quantifying TAK-active arteries compared to static PET. MATERIALS AND METHODS: This prospective study enrolled 10 TAK-active patients (fulfilled the NIH criteria) and 5 control participants from March to October 2022. One-hour dPET scan (all TAK and control participants) and delayed static PET scan at 2-h (all TAK patients) were acquired. For 1-h static PET, summed images from 50 to 60 min of the dPET were extracted. PET parameters derived from 1- and 2-h static PET including SUV (SUV1H and SUV2H), target-to-background ratio (TBR) (TBR1H and TBR2H), net influx rate (Ki), and TBRKi extracted from dPET were obtained. The detectability of TAK-active arteries was compared among different scanning methods using the generalized estimating equation (GEE) with a logistic regression with repeated measures, and the GEE with gamma distribution and log link function was used to evaluate the different study groups or scanning methods. RESULTS: Based on the disease states, 5 cases of TAK were classified as untreated and relapsed, respectively. The SUVmax on 2-h PET was higher than that on 1-h PET in the untreated patients (P < 0.05). However, no significant differences were observed in the median SUVmax between 1-h PET and 2-h PET in the relapsed patients (P > 0.05). The TBRKi was significantly higher than both TBR1H and TBR2H (all P < 0.001). Moreover, the detectability of TAK-active arteries by dPET-derived Ki was significantly higher than 1-h and 2-h PET (all P < 0.001). Significant differences were observed in Kimax, SUVmax-1H, TBR1H, and TBRKi among untreated, relapsed, and control groups (all P < 0.05). CONCLUSIONS: Absolute quantitative assessment by dPET provides an improved sensitivity and detectability in both visualization and quantification of TAK-active arteries. This elucidates the clinical significance of dPET in the early detection of active inflammation and monitoring recurrence.


Subject(s)
Takayasu Arteritis , Humans , Takayasu Arteritis/diagnostic imaging , Fluorodeoxyglucose F18 , Pilot Projects , Radiopharmaceuticals/therapeutic use , Prospective Studies , Feasibility Studies , Positron-Emission Tomography/methods , Inflammation
18.
Anim Nutr ; 14: 269-280, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37600838

ABSTRACT

Medium-chain monoglycerides (MG) have been reported to affect the productive performance, gut microbiota and health of broiler chickens reared in ideal experimental conditions at home and abroad. However, the effects of MG on performance, intestinal development and gut microbiota of chickens in large-scale farms during different feed stages remain unknown. The present study was conducted on a modern farm with a total of 12,000 yellow feathered broiler chicks that were randomly allotted to 2 groups (1000 chicks/replicate, 6 replicates/group) for a 70-day trial. The control group (CON group) received a basal diet, and the treated group (MG group) was fed a basal diet containing 300 mg/kg mixed MG. The results revealed that dietary MG significantly (P < 0.05) increased the body weight and average feed intake, but notably reduced the feed conversion and mortality of chickens in large-scale production during the starter phase. The villus height of the duodenum in the MG group at 1, 2 and 7 wk of age increased notably, and the villus height to crypt depth ratio at 1, 2, 5 and 10 wk of age was improved. Dietary MG decreased the serum insulin content of chickens at 5, 7 and 10 wk of age, and decreased the serum lipopolysaccharide at 3 and 7 wk of age. The triglyceride level of chickens at 3, 5 and 10 wk of age and the low-density lipoprotein cholesterol level of chickens at 7 and 10 wk of age in the MG group decreased notably, while the high-density lipoprotein cholesterol increased significantly. Moreover, MG supplementation selectively increased the relative abundance of genus Bacteroides (family Bacteroidaceae) and Lachnospiraceae_NK4A136_group, but decreased the content of genus Rikenellaceae_RC9_gut_group, Collinsella and family Barnesiellaceae in the cecum of chickens at 3, 7 and 10 wk of age. Conclusively, these findings showed that dietary MG notably enhanced chicken performance, health and feed nutrient utilization at early ages by regulating gut microbiota, intestinal development and serum biochemical indices.

19.
Article in English | MEDLINE | ID: mdl-37648554

ABSTRACT

BACKGROUND: Ischemia-reperfusion injury (IRI) poses a significant challenge to liver transplantation (LT). The underlying mechanism primarily involves overactivation of the immune system. Heat shock protein 110 (HSP110) functions as a molecular chaperone that helps stabilize protein structures. METHODS: An IRI model was established by performing LT on Sprague-Dawley rats, and HSP110 was silenced using siRNA. Hematoxylin-eosin staining, TUNEL, immunohistochemistry, ELISA and liver enzyme analysis were performed to assess IRI following LT. Western blotting and quantitative reverse transcription-polymerase chain reaction were conducted to investigate the pertinent molecular changes. RESULTS: Our findings revealed a significant increase in the expression of HSP110 at both the mRNA and protein levels in the rat liver following LT (P < 0.05). However, when rats were injected with siRNA-HSP110, IRI subsequent to LT was notably reduced (P < 0.05). Additionally, the levels of liver enzymes and inflammatory chemokines in rat serum were significantly reduced (P < 0.05). Silencing HSP110 with siRNA resulted in a marked decrease in M1-type polarization of Kupffer cells in the liver and downregulated the NF-κB pathway in the liver (P < 0.05). CONCLUSIONS: HSP110 in the liver promotes IRI after LT in rats by activating the NF-κB pathway and inducing M1-type polarization of Kupffer cells. Targeting HSP110 to prevent IRI after LT may represent a promising new approach for the treatment of LT-associated IRI.

20.
Front Pharmacol ; 14: 1188011, 2023.
Article in English | MEDLINE | ID: mdl-37292152

ABSTRACT

Background: Dexmedetomidine (DEX), an adjuvant anesthetic, may improve the clinical outcomes of liver transplantation (LT). Methods: We summarized the relevant clinical trials of DEX in patients undergoing LT. As of 30 January 2023, we searched The Cochrane Library, MEDLINE, EMBASE, Clinical Trial.gov and the WHO ICTRP. The main outcomes were postoperative liver and renal function. The random effect model or fixed effect model was used to summarize the outcomes across centers based on the differences in heterogeneity. Results: The meta-analysis included nine studies in total. Compared with the control group, the DEX group had a reduced warm ischemia time (MD-4.39; 95% CI-6.74--2.05), improved postoperative liver (peak aspartate transferase: MD-75.77, 95% CI-112.81--38.73; peak alanine transferase: MD-133.51, 95% CI-235.57--31.45) and renal function (peak creatinine: MD-8.35, 95% CI-14.89--1.80), and a reduced risk of moderate-to-extreme liver ischemia-reperfusion injury (OR 0.28, 95% CI 0.14-0.60). Finally, the hospital stay of these patients was decreased (MD-2.28, 95% CI-4.00--0.56). Subgroup analysis of prospective studies showed that DEX may have better efficacy in living donors and adult recipients. Conclusion: DEX can improve short-term clinical outcomes and shorten the hospital stay of patients. However, the long-term efficacy of DEX and its interfering factors deserves further study. Systematic Review: identifier CRD42022351664.

SELECTION OF CITATIONS
SEARCH DETAIL
...