Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Biol Med ; 175: 108485, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38653063

ABSTRACT

Various studies have linked several diseases, including cancer and COVID-19, to single nucleotide variations (SNV). Although single-cell RNA sequencing (scRNA-seq) technology can provide SNV and gene expression data, few studies have integrated and analyzed these multimodal data. To address this issue, we introduce Interpretable Single-cell Multimodal Data Integration Based on Variational Autoencoder (ISMI-VAE). ISMI-VAE leverages latent variable models that utilize the characteristics of SNV and gene expression data to overcome high noise levels and uses deep learning techniques to integrate multimodal information, map them to a low-dimensional space, and classify disease cells. Moreover, ISMI-VAE introduces an attention mechanism to reflect feature importance and analyze genetic features that could potentially cause disease. Experimental results on three cancer data sets and one COVID-19 data set demonstrate that ISMI-VAE surpasses the baseline method in terms of both effectiveness and interpretability and can effectively identify disease-causing gene features.


Subject(s)
COVID-19 , Deep Learning , Neoplasms , SARS-CoV-2 , Humans , COVID-19/genetics , SARS-CoV-2/genetics , Neoplasms/genetics , Single-Cell Analysis/methods , Polymorphism, Single Nucleotide , Pandemics , Pneumonia, Viral/genetics , Coronavirus Infections/genetics , Betacoronavirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...