Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Nutrients ; 16(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38732552

ABSTRACT

Ulcerative colitis (UC) is a chronic intestinal ailment which cannot be completely cured. The occurrence of UC has been on the rise in recent years, which is highly detrimental to patients. The effectiveness of conventional drug treatment is limited. The long-term usage of these agents can lead to substantial adverse effects. Therefore, the development of a safe and efficient dietary supplement is important for the prevention of UC. Echinacea purpurea polysaccharide (EPP) is one of the main bioactive substances in Echinacea purpurea. EPP has many favorable effects, such as antioxidative, anti-inflammatory, and antitumor effects. However, whether EPP can prevent or alleviate UC is still unclear. This study aims to analyze the effect and mechanism of EPP on UC in mice using a 3% dextran sulfate sodium (DSS)-induced UC model. The results showed that dietary supplementation with 200 mg/kg EPP significantly alleviated the shortening of colon length, weight loss, and histopathological damage in DSS-induced colitis mice. Mechanistically, EPP significantly inhibits the activation of the TLR4/NF-κB pathway and preserves the intestinal mechanical barrier integrity by enhancing the expression of claudin-1, ZO-1, and occludin and reducing the loss of goblet cells. Additionally, 16S rRNA sequencing revealed that EPP intervention reduced the abundance of Bacteroides, Escherichia-Shigella, and Klebsiella; the abundance of Lactobacillus increased. The results of nontargeted metabonomics showed that EPP reshaped metabolism. In this study, we clarified the effect of EPP on UC, revealed the potential function of EPP, and supported the use of polysaccharide dietary supplements for UC prevention.


Subject(s)
Colitis, Ulcerative , Dextran Sulfate , Echinacea , Gastrointestinal Microbiome , NF-kappa B , Polysaccharides , Toll-Like Receptor 4 , Animals , Male , Mice , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/microbiology , Colon/drug effects , Colon/pathology , Colon/metabolism , Dietary Supplements , Disease Models, Animal , Echinacea/chemistry , Gastrointestinal Microbiome/drug effects , Mice, Inbred C57BL , NF-kappa B/metabolism , Polysaccharides/pharmacology , Signal Transduction/drug effects , Toll-Like Receptor 4/metabolism
2.
Food Funct ; 15(10): 5466-5484, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38690672

ABSTRACT

Inflammatory bowel disease (IBD) is difficult to cure, and formulating a dietary plan is an effective means to prevent and treat this disease. Wheat peptide contains a variety of bioactive peptides with anti-inflammatory and antioxidant functions. The results of this study showed that preventive supplementation with wheat peptide (WP) can significantly alleviate the symptoms of dextran sulfate sodium (DSS)-induced colitis in mice. WP can increase body weight, alleviate colon shortening, and reduce disease activity index (DAI) scores. In addition, WP improved intestinal microbial disorders in mice with colitis. Based on LC-MS, a total of 313 peptides were identified in WP, 4 of which were predicted to be bioactive peptides. The regulatory effects of WP and four bioactive peptides on the Keap1-Nrf2 signaling pathway were verified in Caco-2 cells. In conclusion, this study demonstrated that WP alleviates DSS-induced colitis by helping maintain gut barrier integrity and targeting the Keap1-Nrf2 axis; these results provided a rationale for adding WP to dietary strategies to prevent IBD.


Subject(s)
Colitis , Dextran Sulfate , Kelch-Like ECH-Associated Protein 1 , Mice, Inbred C57BL , NF-E2-Related Factor 2 , Peptides , Signal Transduction , Triticum , Animals , NF-E2-Related Factor 2/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Mice , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Dextran Sulfate/adverse effects , Signal Transduction/drug effects , Humans , Triticum/chemistry , Caco-2 Cells , Peptides/pharmacology , Male , Disease Models, Animal , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects
3.
FASEB J ; 38(4): e23469, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38358361

ABSTRACT

The adenopituitary secretes follicle-stimulating hormone (FSH), which plays a crucial role in regulating the growth, development, and reproductive functions of organisms. Investigating the process of FSH synthesis and secretion can offer valuable insights into potential areas of focus for reproductive research. Epidermal growth factor (EGF) is a significant paracrine/autocrine factor within the body, and studies have demonstrated its ability to stimulate FSH secretion in animals. However, the precise mechanisms that regulate this action are still poorly understood. In this research, in vivo and in vitro experiments showed that the activation of epidermal growth factor receptor (EGFR) by EGF induces the upregulation of miR-27b-3p and that miR-27b-3p targets and inhibits Foxo1 mRNA expression, resulting in increased FSH synthesis and secretion. In summary, this study elucidates the precise molecular mechanism through which EGF governs the synthesis and secretion of FSH via the EGFR/miR-27b-3p/FOXO1 pathway.


Subject(s)
Epidermal Growth Factor , MicroRNAs , Animals , Rats , Biological Transport , ErbB Receptors/genetics , Follicle Stimulating Hormone , MicroRNAs/genetics
4.
Nutrients ; 15(23)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38068735

ABSTRACT

Ulcerative colitis (UC) is a chronic noninfectious intestinal disease that severely affects patients' quality of life. Agaricus blazei Murrill polysaccharide (ABP) is an effective active ingredient extracted from Agaricus blazei Murrill (ABM). It has good efficacy in inhibiting tumor cell growth, lowering blood pressure, and improving atherosclerosis. However, its effect on colitis is unclear. The aim of this study was to analyze the protective effects and potential mechanisms of ABP against dextran sulfate sodium (DSS)-induced acute colitis in mice. The results showed that dietary supplementation with ABP significantly alleviated DSS-induced colitis symptoms, inflammatory responses, and oxidative stress. Meanwhile, ABP intervention was able to maintain the integrity of the intestinal mechanical barrier by promoting the expression of ZO-1 and Occludin tight junction proteins and facilitating mucus secretion. Moreover, 16S rRNA sequencing results suggested that ABP intervention was able to alleviate DSS-induced gut microbiota disruption, and nontargeted metabolomics results indicated that ABP was able to remodel metabolism. In conclusion, these results demonstrate that dietary supplementation with ABP alleviated DSS-induced acute colitis by maintaining intestinal barrier integrity and remodeling metabolism. These results improve our understanding of ABP function and provide a theoretical basis for the use of dietary supplementation with ABP for the prevention of ulcerative colitis.


Subject(s)
Colitis, Ulcerative , Colitis , Noncommunicable Diseases , Humans , Animals , Mice , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Quality of Life , RNA, Ribosomal, 16S , Colitis/chemically induced , Colitis/drug therapy , Polysaccharides/pharmacology , Dextran Sulfate , Mice, Inbred C57BL , Disease Models, Animal , Colon
5.
Small ; : e2307193, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38054765

ABSTRACT

Cytochrome C (Cytc) has received considerable attention due to its ability to induce tumor apoptosis and generate oxygen to improve photodynamic therapy (PDT) efficiency. However, the damage to normal tissues caused by nonspecific accumulation of Cytc limits its application. Herein, in order to reduce its toxicity to normal tissues while retaining its activity, a charge conversional biomimetic nanosystem (CA/Ce6@MSN-4T1) is proposed to improve the tumor targeting ability and realize controlled release of Cytc in the tumor microenvironment. This nanosystem is constructed by coating tumor cell membrane on mesoporous silica nanoparticles coloaded with a photosensitizer (chlorin e6, Ce6) and the citraconic anhydride conjugated Cytc (CA) for synergistic photodynamic/protein therapy. The coating of the tumor cell membrane endows the nanoparticles with homologous targeting ability to the same cancer cells as well as immune escaping capability. CA undergoes charge conversion in the acidic environment of the tumor to achieve a controlled release of Cytc. The released Cytc can relieve cellular hypoxia to improve the PDT efficiency of Ce6 and can induce programmed cell death. Both in vitro and in vivo studies demonstrated that CA/Ce6@MSN-4T1 can efficiently inhibit the growth of tumors through synergistic photodynamic/protein therapy, and meanwhile show reduced side effects on normal tissues.

6.
Nutrients ; 15(24)2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38140314

ABSTRACT

The prevalence of inflammatory bowel disease (IBD) is progressively rising each year, emphasizing the significance of implementing rational dietary interventions for disease prevention. Oats, being a staple agricultural product, are abundant in protein content. This study aimed to investigate the protective effects and underlying mechanisms of oat peptides (OPs) in a mouse model of acute colitis induced by dextran sulfate sodium salt (DSS) and a Caco-2 cell model. The findings demonstrated that intervention with OPs effectively mitigated the symptoms associated with DSS-induced colitis. The physicochemical characterization analysis demonstrated that the molecular weight of the OPs was predominantly below 5 kDa, with a predominant composition of 266 peptides. This study provides further evidence of the regulatory impact of OPs on the Keap1-Nrf2 signaling axis and elucidates the potential role of WGVGVRAERDA as the primary bioactive peptide responsible for the functional effects of OPs. Ultimately, the results of this investigation demonstrate that OPs effectively mitigate DSS-induced colitis by preserving the integrity of the intestinal barrier and modulating the Keap1-Nrf2 axis. Consequently, these findings establish a theoretical foundation for the utilization of OPs as dietary supplements to prevent the onset of IBD.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Humans , Animals , Mice , Avena , Dextran Sulfate/adverse effects , NF-E2-Related Factor 2/metabolism , Caco-2 Cells , Kelch-Like ECH-Associated Protein 1/metabolism , Colitis/chemically induced , Colitis/prevention & control , Colitis/metabolism , Sodium Chloride/adverse effects , Sodium Chloride, Dietary/adverse effects , Inflammatory Bowel Diseases/chemically induced , Disease Models, Animal , Mice, Inbred C57BL , Colon/metabolism
7.
Cell Rep ; 42(6): 112544, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37227820

ABSTRACT

Maternal RNAs are stored from minutes to decades in oocytes throughout meiosis I arrest in a transcriptionally quiescent state. Recent reports, however, propose a role for nascent transcription in arrested oocytes. Whether arrested oocytes launch nascent transcription in response to environmental or hormonal signals while maintaining the meiosis I arrest remains undetermined. We test this by integrating single-cell RNA sequencing, RNA velocity, and RNA fluorescence in situ hybridization on C. elegans meiosis I arrested oocytes. We identify transcripts that increase as the arrested meiosis I oocyte ages, but rule out extracellular signaling through ERK MAPK and nascent transcription as a mechanism for this increase. We report transcript acquisition from neighboring somatic cells as a mechanism of transcript increase during meiosis I arrest. These analyses provide a deeper view at single-cell resolution of the RNA landscape of a meiosis I arrested oocyte and as it prepares for oocyte maturation and fertilization.


Subject(s)
Caenorhabditis elegans , Oocytes , Animals , Caenorhabditis elegans/genetics , In Situ Hybridization, Fluorescence , Meiosis/genetics , RNA
8.
Genes (Basel) ; 14(4)2023 03 31.
Article in English | MEDLINE | ID: mdl-37107604

ABSTRACT

The pituitary gland is a key participant in the hypothalamic-pituitary-gonadal axis, as it secretes a variety of hormones and plays an important role in mammalian reproduction. Gonadotrophin-releasing hormone(GnRH) signaling molecules can bind to GnRH receptors on the surfaces of adenohypophysis gonadotropin cells and regulate the expression of follicle-stimulating hormone(FSH) and luteinizing hormone(LH) through various pathways. An increasing number of studies have shown that noncoding RNAs mediate the regulation of GnRH signaling molecules in the adenohypophysis. However, the expression changes and underlying mechanisms of genes and noncoding RNAs in the adenohypophysis under the action of GnRH remain unclear. In the present study, we performed RNA sequencing (RNA-seq) of the rat adenohypophysis before and after GnRH treatment to identify differentially expressed mRNAs, lncRNAs, and miRNAs. We found 385 mRNAs, 704 lncRNAs, and 20 miRNAs that were significantly differentially expressed in the rat adenohypophysis. Then, we used a software to predict the regulatory roles of lncRNAs as molecular sponges that compete with mRNAs to bind miRNAs, and construct a GnRH-mediated ceRNA regulatory network. Finally, we enriched the differentially expressed mRNAs, lncRNA target genes, and ceRNA regulatory networks to analyze their potential roles. Based on the sequencing results, we verified that GnRH could affect FSH synthesis and secretion by promoting the competitive binding of lncRNA-m23b to miR-23b-3p to regulate the expression of Calcium/Calmodulin Dependent Protein Kinase II Delta(CAMK2D). Our findings provide strong data to support exploration of the physiological processes in the rat adenohypophysis under the action of GnRH. Furthermore, our profile of lncRNA expression in the rat adenohypophysis provides a theoretical basis for research on the roles of lncRNAs in the adenohypophysis.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Humans , Rats , Animals , Gonadotropin-Releasing Hormone/genetics , Gonadotropin-Releasing Hormone/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Transcriptome , Follicle Stimulating Hormone/genetics , Pituitary Gland/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Mammals/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism
9.
Nat Methods ; 20(4): 590-599, 2023 04.
Article in English | MEDLINE | ID: mdl-36928074

ABSTRACT

Our understanding of nerve regeneration can be enhanced by delineating its underlying molecular activities at single-neuron resolution in model organisms such as Caenorhabditis elegans. Existing cell isolation techniques cannot isolate neurons with specific regeneration phenotypes from C. elegans. We present femtosecond laser microdissection (fs-LM), a single-cell isolation method that dissects specific cells directly from living tissue by leveraging the micrometer-scale precision of fs-laser ablation. We show that fs-LM facilitates sensitive and specific gene expression profiling by single-cell RNA sequencing (scRNA-seq), while mitigating the stress-related transcriptional artifacts induced by tissue dissociation. scRNA-seq of fs-LM isolated regenerating neurons revealed transcriptional programs that are correlated with either successful or failed regeneration in wild-type and dlk-1 (0) animals, respectively. This method also allowed studying heterogeneity displayed by the same type of neuron and found gene modules with expression patterns correlated with axon regrowth rate. Our results establish fs-LM as a spatially resolved single-cell isolation method for phenotype-to-genotype mapping.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/genetics , Microdissection/methods , Neurons/physiology , Lasers , Sequence Analysis, RNA , MAP Kinase Kinase Kinases , Caenorhabditis elegans Proteins/genetics
10.
Int J Mol Sci ; 24(4)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36834752

ABSTRACT

The regulation of mammalian reproductive activity is tightly dependent on the HPG axis crosstalk, in which several reproductive hormones play important roles. Among them, the physiological functions of gonadotropins are gradually being uncovered. However, the mechanisms by which GnRH regulates FSH synthesis and secretion still need to be more extensively and deeply explored. With the gradual completion of the human genome project, proteomes have become extremely important in the fields of human disease and biological process research. To explore the changes of protein and protein phosphorylation modifications in the adenohypophysis after GnRH stimulation, proteomics and phosphoproteomics analyses of rat adenohypophysis after GnRH treatment were performed by using TMT markers, HPLC classification, LC/MS, and bioinformatics analysis in this study. A total of 6762 proteins and 15,379 phosphorylation sites contained quantitative information. Twenty-eight upregulated proteins and fifty-three downregulated proteins were obtained in the rat adenohypophysis after GnRH treatment. The 323 upregulated phosphorylation sites and 677 downregulated phosphorylation sites found in the phosphoproteomics implied that a large number of phosphorylation modifications were regulated by GnRH and were involved in FSH synthesis and secretion. These data constitute a protein-protein phosphorylation map in the regulatory mechanism of "GnRH-FSH," which provides a basis for future studies on the complex molecular mechanisms of FSH synthesis and secretion. The results will be helpful for understanding the role of GnRH in the development and reproduction regulated by the pituitary proteome in mammals.


Subject(s)
Gonadotropin-Releasing Hormone , Pituitary Gland, Anterior , Animals , Rats , Follicle Stimulating Hormone/metabolism , Gonadotropin-Releasing Hormone/metabolism , Luteinizing Hormone/metabolism , Pituitary Gland, Anterior/metabolism , Proteomics
11.
Biomicrofluidics ; 13(5): 054102, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31558920

ABSTRACT

Long-term, time-lapse imaging studies of embryonic stem cells (ESCs) require a controlled and stable culturing environment for high-resolution imaging. Microfluidics is well-suited for such studies, especially when the media composition needs to be rapidly and accurately altered without disrupting the imaging. Current studies in plates, which can only add molecules at the start of an experiment without any information on the levels of endogenous signaling before the exposure, are incompatible with continuous high-resolution imaging and cell-tracking. Here, we present a custom designed, fully automated microfluidic chip to overcome these challenges. A unique feature of our chip includes three-dimensional ports that can connect completely sealed on-chip valves for fluid control to individually addressable cell culture chambers with thin glass bottoms for high-resolution imaging. We developed a robust protocol for on-chip culturing of mouse ESCs for minimum of 3 days, to carry out experiments reliably and repeatedly. The on-chip ESC growth rate was similar to that on standard culture plates with same initial cell density. We tested the chips for high-resolution, time-lapse imaging of a sensitive reporter of ESC lineage priming, Nanog-GFP, and HHex-Venus with an H2B-mCherry nuclear marker for cell-tracking. Two color imaging of cells was possible over a 24-hr period while maintaining cell viability. Importantly, changing the media did not affect our ability to track individual cells. This system now enables long-term fluorescence imaging studies in a reliable and automated manner in a fully controlled microenvironment.

12.
Nat Commun ; 9(1): 4499, 2018 10 29.
Article in English | MEDLINE | ID: mdl-30374138

ABSTRACT

Three-dimensional, fluorescence imaging methods with ~1 MHz frame rates are needed for high-speed, blur-free flow cytometry and capturing volumetric neuronal activity. The frame rates of current imaging methods are limited to kHz by the photon budget, slow camera readout, and/or slow laser beam scanners. Here, we present line excitation array detection (LEAD) fluorescence microscopy, a high-speed imaging method capable of providing 0.8 million frames per second. The method performs 0.8 MHz line-scanning of an excitation laser beam using a chirped signal-driven longitudinal acousto-optic deflector to create a virtual light-sheet, and images the field-of-view with a linear photomultiplier tube array to generate a 66 × 14 pixel frame each scan cycle. We implement LEAD microscopy as a blur-free flow cytometer for Caenorhabditis elegans moving at 1 m s-1 with 3.5-µm resolution and signal-to-background ratios >200. Signal-to-noise measurements indicate future LEAD fluorescence microscopes can reach higher resolutions and pixels per frame without compromising frame rates.


Subject(s)
Imaging, Three-Dimensional/instrumentation , Imaging, Three-Dimensional/methods , Microscopy, Fluorescence/instrumentation , Microscopy, Fluorescence/methods , Animals , Caenorhabditis elegans/drug effects , Dimethyl Sulfoxide/pharmacology , Flow Cytometry/instrumentation , Flow Cytometry/methods , Models, Biological , Neurons , Optics and Photonics/instrumentation , Optics and Photonics/methods , Peptides , Photons , Protein Aggregation, Pathological/diagnostic imaging , Sensitivity and Specificity
13.
Sci Rep ; 7(1): 9837, 2017 08 29.
Article in English | MEDLINE | ID: mdl-28852096

ABSTRACT

Several sophisticated microfluidic devices have recently been proposed for femtosecond laser axotomy in the nematode C. elegans for immobilization of the animals for surgery to overcome time-consuming and labor-intensive manual processes. However, nerve regeneration studies require long-term recovery of the animals and multiple imaging sessions to observe the regeneration capabilities of their axons post-injury. Here we present a simple, multi-trap device, consisting of a single PDMS (polydimethylsiloxane) layer, which can immobilize up to 20 animals at the favorable orientation for optical access needed for precise laser surgery and high-resolution imaging. The new device, named "worm hospital" allows us to perform the entire nerve regeneration studies, including on-chip axotomy, post-surgery housing for recovery, and post-recovery imaging all on one microfluidic chip. Utilizing the worm hospital and analysis of mutants, we observed that most but not all neurodevelopmental genes in the Wnt/Frizzled pathway are important for regeneration of the two touch receptor neurons ALM and PLM. Using our new chip, we observed that the cwn-2 and cfz-2 mutations significantly reduced the reconnection possibilities of both neurons without any significant reduction in the regrowth lengths of the severed axons. We observed a similar regeneration phenotype with cwn-1 mutation in ALM neurons only.


Subject(s)
Caenorhabditis elegans/physiology , Microfluidic Analytical Techniques , Microfluidics , Nerve Regeneration , Animals , Axons/physiology , Cell Polarity/genetics , Fluorescent Antibody Technique , Neurons/physiology
14.
IEEE J Transl Eng Health Med ; 2: 1700108, 2014.
Article in English | MEDLINE | ID: mdl-27170865

ABSTRACT

Miniaturized helix antennas are integrated with drug reservoirs to function as RFID wireless tag sensors for real-time drug dosage monitoring. The general design procedure of this type of biomedical antenna sensors is proposed based on electromagnetic theory and finite element simulation. A cost effective fabrication process is utilized to encapsulate the antenna sensor within a biocompatible package layer using PDMS material, and at the same time form a drug storage or drug delivery unit inside the sensor. The in vitro experiment on two prototypes of antenna sensor-drug reservoir assembly have shown the ability to monitor the drug dosage by tracking antenna resonant frequency shift from 2.4-2.5-GHz ISM band with realized sensitivity of 1.27 [Formula: see text] for transdermal drug delivery monitoring and 2.76-[Formula: see text] sensitivity for implanted drug delivery monitoring.

SELECTION OF CITATIONS
SEARCH DETAIL
...