Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.658
Filter
1.
Article in English | MEDLINE | ID: mdl-38830050

ABSTRACT

OBJECTIVES: The association between obesity and graft failure after coronary artery bypass grafting has not been previously investigated. METHODS: We pooled individual patient data from randomized clinical trials with systematic post-operative coronary imaging to evaluate the association between obesity and graft failure at the individual graft and patient levels. Penalized cubic regression splines and mixed-effects multivariable logistic regression models were performed. RESULTS: Six trials comprising 3,928 patients and 12,048 grafts were included. The median time to imaging was 1.03 (IQR, 1.00-1.09) years. By body mass index (BMI) category, 800 (20.4%) patients were normal weight (BMI 18.5-24.9), 1,668 (42.5%) were overweight (BMI 25-29.9), 983 (25.0%) were obesity class 1 (BMI 30-34.9), 344 (8.8%) were obesity class 2 (BMI 35-39.9), and 116 (2.9%) were obesity class 3 (BMI 40+). As a continuous variable, BMI was associated with reduced graft failure (adjusted odds ratio [aOR] 0.98 [95% CI, 0.97-0.99]) at the individual graft level. Compared to normal weight patients, graft failure at the individual graft level was reduced in overweight (aOR 0.79 [95% CI, 0.64-0.96]), obesity class 1 (aOR 0.81 [95% CI, 0.64-1.01]), and obesity class 2 (aOR 0.61 [95% CI, 0.45-0.83]) patients, but not different compared to obesity class 3 (aOR 0.94 [95% CI, 0.62-1.42]) patients. Findings were similar, but did not reach significance, at the patient level. CONCLUSIONS: In a pooled individual patient data analysis of randomized clinical trials, BMI and obesity appear to be associated with reduced graft failure at one year after coronary artery bypass grafting.

2.
Sci Transl Med ; 16(745): eadh1763, 2024 May.
Article in English | MEDLINE | ID: mdl-38691618

ABSTRACT

An abdominal aortic aneurysm (AAA) is a life-threatening cardiovascular disease. We identified plasma insulin-like growth factor 1 (IGF1) as an independent risk factor in patients with AAA by correlating plasma IGF1 with risk. Smooth muscle cell- or fibroblast-specific knockout of Igf1r, the gene encoding the IGF1 receptor (IGF1R), attenuated AAA formation in two mouse models of AAA induced by angiotensin II infusion or CaCl2 treatment. IGF1R was activated in aortic aneurysm samples from human patients and mice with AAA. Systemic administration of IGF1C, a peptide fragment of IGF1, 2 weeks after disease development inhibited AAA progression in mice. Decreased AAA formation was linked to competitive inhibition of IGF1 binding to its receptor by IGF1C and modulation of downstream alpha serine/threonine protein kinase (AKT)/mammalian target of rapamycin signaling. Localized application of an IGF1C-loaded hydrogel was developed to reduce the side effects observed after systemic administration of IGF1C or IGF1R antagonists in the CaCl2-induced AAA mouse model. The inhibitory effect of the IGF1C-loaded hydrogel administered at disease onset on AAA formation was further evaluated in a guinea pig-to-rat xenograft model and in a sheep-to-minipig xenograft model of AAA formation. The therapeutic efficacy of IGF1C for treating AAA was tested through extravascular delivery in the sheep-to-minipig model with AAA established for 2 weeks. Percutaneous injection of the IGF1C-loaded hydrogel around the AAA resulted in improved vessel flow dynamics in the minipig aorta. These findings suggest that extravascular administration of IGF1R antagonists may have translational potential for treating AAA.


Subject(s)
Aortic Aneurysm, Abdominal , Disease Models, Animal , Insulin-Like Growth Factor I , Receptor, IGF Type 1 , Animals , Receptor, IGF Type 1/metabolism , Receptor, IGF Type 1/antagonists & inhibitors , Humans , Aortic Aneurysm, Abdominal/pathology , Aortic Aneurysm, Abdominal/drug therapy , Aortic Aneurysm, Abdominal/metabolism , Aortic Aneurysm, Abdominal/prevention & control , Insulin-Like Growth Factor I/metabolism , Male , Swine , Mice , Signal Transduction/drug effects , Mice, Inbred C57BL , Rats
3.
Front Med (Lausanne) ; 11: 1254467, 2024.
Article in English | MEDLINE | ID: mdl-38695016

ABSTRACT

Background: Preeclampsia (PE) is a pregnancy complication defined by new onset hypertension and proteinuria or other maternal organ damage after 20 weeks of gestation. Although non-invasive prenatal testing (NIPT) has been widely used to detect fetal chromosomal abnormalities during pregnancy, its performance in combination with maternal risk factors to screen for PE has not been extensively validated. Our aim was to develop and validate classifiers that predict early- or late-onset PE using the maternal plasma cell-free DNA (cfDNA) profile and clinical risk factors. Methods: We retrospectively collected and analyzed NIPT data of 2,727 pregnant women aged 24-45 years from four hospitals in China, which had previously been used to screen for fetal aneuploidy at 12 + 0 ~ 22 + 6 weeks of gestation. According to the diagnostic criteria for PE and the time of diagnosis (34 weeks of gestation), a total of 143 early-, 580 late-onset PE samples and 2,004 healthy controls were included. The wilcoxon rank sum test was used to identify the cfDNA profile for PE prediction. The Fisher's exact test and Mann-Whitney U-test were used to compare categorical and continuous variables of clinical risk factors between PE samples and healthy controls, respectively. Machine learning methods were performed to develop and validate PE classifiers based on the cfDNA profile and clinical risk factors. Results: By using NIPT data to analyze cfDNA coverages in promoter regions, we found the cfDNA profile, which was differential cfDNA coverages in gene promoter regions between PE and healthy controls, could be used to predict early- and late-onset PE. Maternal age, body mass index, parity, past medical histories and method of conception were significantly differential between PE and healthy pregnant women. With a false positive rate of 10%, the classifiers based on the combination of the cfDNA profile and clinical risk factors predicted early- and late-onset PE in four datasets with an average accuracy of 89 and 80% and an average sensitivity of 63 and 48%, respectively. Conclusion: Incorporating cfDNA profiles in classifiers might reduce performance variations in PE models based only on clinical risk factors, potentially expanding the application of NIPT in PE screening in the future.

4.
Parkinsonism Relat Disord ; 124: 106998, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38729069

ABSTRACT

Gait analysis can be utilized as an effective method for identifying Parkinson's disease (PD) [1]. However, research methods based on the time-domain gait feature analysis are influenced by population characteristics such as individual height, age, and weight, which unfavorably affect PD diagnostic decision-making.

5.
Int Immunopharmacol ; 133: 112145, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38691920

ABSTRACT

Treatment strategies for paediatric neuroblastoma as well as many other cancers are limited by the unfavourable tumour microenvironment (TME). In this study, the TMEs of neuroblastoma were grouped by their genetic signatures into four distinct subtypes: immune enriched, immune desert, non-proliferative and fibrotic. An Immune Score and a Proliferation Score were constructed based on the molecular features of the subtypes to quantify the immune microenvironment or malignancy degree of cancer cells in neuroblastoma, respectively. The Immune Score correlated with a patient's response to immunotherapy; the Proliferation Score was an independent prognostic biomarker for neuroblastoma and proved to be more accurate than the existing clinical predictors. This double scoring system was further validated and the conserved molecular pattern associated with immune landscape and malignancy degree was confirmed. Axitinib and BI-2536 were confirmed as candidate drugs for neuroblastoma by the double scoring system. Both in vivo and in vitro experiments demonstrated that axitinib-induced pyroptosis of neuroblastoma cells activated anti-tumour immunity and inhibited tumour growth; BI-2536 induced cell cycle arrest at the S phase in neuroblastoma cells. The comprehensive double scoring system of neuroblastoma may predict prognosis and screen for therapeutic strategies which could provide personalized treatments.


Subject(s)
Axitinib , Immunotherapy , Neuroblastoma , Tumor Microenvironment , Neuroblastoma/immunology , Neuroblastoma/therapy , Neuroblastoma/pathology , Neuroblastoma/drug therapy , Humans , Tumor Microenvironment/immunology , Prognosis , Animals , Immunotherapy/methods , Cell Line, Tumor , Axitinib/therapeutic use , Child , Male , Female , Child, Preschool , Mice , Infant , Xenograft Model Antitumor Assays , Cell Proliferation/drug effects
6.
Small ; : e2401019, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38757438

ABSTRACT

As a sustainable energy technology, electrocatalytic energy conversion requires electrocatalysts, which greatly motivates the exploitation of high-performance electrocatalysts based on nonprecious metals. Molybdenum-based nanomaterials have demonstrated promise as electrocatalysts because of their unique physiochemical and electronic properties. Among them, atomic Mo catalysts, also called Mo-based single-atom catalysts (Mo-SACs), have the most accessible active sites and tunable microenvironments and are thrivingly explored in various electrochemical conversion reactions. A timely review of such rapidly developing topics is necessary to provide guidance for further exploration of optimized Mo-SACs toward electrochemical energy technologies. In this review, recent advances in the synthetic strategies for Mo-SACs are highlighted, focusing on the microenvironment engineering of Mo atoms. Then, the representative achievements of their applications in various electrocatalytic reactions involving the N2, H2O, and CO2 cycles are summarized by combining experimental and computational results. Finally, prospects for the future development of Mo-SACs in electrocatalysis are provided and the key challenges that require further investigation and optimization are highlighted.

8.
Heliyon ; 10(9): e30666, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38765156

ABSTRACT

Non-intrusive load monitoring (NILM) offers precise insights into equipment-level energy consumption by analyzing current and voltage data from residential smart meters, thus emerging as a potential strategy for demand-side management in power systems. However, a prevalent limitation in current NILM techniques is the presupposition of a known inventory of household appliances, an assumption that often becomes impractical due to the regular introduction of new appliances by consumers. To address this challenge, our approach integrates a vision transformer network with an additional detection head (ViTD), utilizing V-I trajectory images. Initially, the ViT model is trained to classify known appliances. Subsequently, an additional detection head is incorporated to manipulate the embedded features, encouraging the formation of distinct, compact class centers for the known appliance categories. During testing, samples are identified as either known or unknown appliances based on their proximity to these class centers. We utilize two public datasets, PLAID and WHITED, to demonstrate the effectiveness and superiority of our proposed method.

9.
Mol Breed ; 44(5): 34, 2024 May.
Article in English | MEDLINE | ID: mdl-38725797

ABSTRACT

Members of the permease gene family are responsible for important biological functions in the growth and development of rice. Here, we show that OsAAP8 is a constitutive expression gene, and its translated protein is localized on the cell membrane. Mutation of the OsAAP8 can promote the expression of genes related to protein and amylopectin synthesis, and also promote the enlargement of protein bodies in its endosperm, leading to an increase in the protein, amylopectin, and total amino acid content of grains in OsAAP8 mutants. Seeds produced by the OsAAP8 mutant were larger, and the chalkiness traits of the OsAAP8 mutants were significantly reduced, thereby improving the nutritional quality and appearance of rice grains. The OsAAP8 protein is involved in the transport of various amino acids; OsAAP8 mutation significantly enhanced the root absorption of a range of amino acids and might affect the distribution of various amino acids. Therefore, OsAAP8 is an important quality trait gene with multiple biological functions, which provides important clues for the molecular design of breeding strategies for developing new high-quality varieties of rice. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01473-w.

10.
Nano Lett ; 24(20): 6183-6191, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38728596

ABSTRACT

Two-dimensional (2D) materials are promising candidates for spintronic applications. Maintaining their atomically smooth interfaces during integration of ferromagnetic (FM) electrodes is crucial since conventional metal deposition tends to induce defects at the interfaces. Meanwhile, the difficulties in picking up FM metals with strong adhesion and in achieving conductance match between FM electrodes and spin transport channels make it challenging to fabricate high-quality 2D spintronic devices using metal transfer techniques. Here, we report a solvent-free magnetic electrode transfer technique that employs a graphene layer to assist in the transfer of FM metals. It also serves as part of the FM electrode after transfer for optimizing spin injection, which enables the realization of spin valves with excellent performance based on various 2D materials. In addition to two-terminal devices, we demonstrate that the technique is applicable for four-terminal spin valves with nonlocal geometry. Our results provide a promising future of realizing 2D spintronic applications using the developed magnetic electrode transfer technique.

11.
J Colloid Interface Sci ; 670: 96-102, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38759272

ABSTRACT

Replacing the anodic oxygen evolution reaction (OER) in water splitting with 5-hydroxymethylfurfural oxidation reaction (HMFOR) can not only reduce the energy required for hydrogen production but also yield the valuable chemical 2,5-furandicarboxylic acid (FDCA). Co-based catalysts are known to be efficient for HMFOR, with high-valent Co being recognized as the main active component. However, efficiently promoting the oxidation of Co2+ to produce high-valent reactive species remains a challenge. In this study, Ni-doped CoTe (CoNiTe) nanorods were prepared as efficient catalysts for HMFOR, achieving a high HMFOR current density of 65.3 mA cm-2 at 1.50 V. Even after undergoing five successive electrolysis processes, the Faradaic efficiency (FE) remained at approximately 90.7 %, showing robust electrochemical durability. Mechanistic studies indicated that Ni doping changes the electronic configuration of Co, enhancing its charge transfer rate and facilitating the oxidation of Co2+ to high-valent CoO2 species. This work reveals the effect of Ni doping on the reconfiguration of the active phase during HMFOR.

12.
Mol Neurobiol ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819635

ABSTRACT

An increase in α-synuclein (α-syn) levels and mutations in proteins associated with mitochondria contribute to the development of familial Parkinson's disease (PD); however, the involvement of α-syn and mitochondria in idiopathic PD remains incompletely understood. The voltage-dependent anion channel I (VDAC1) protein, which serves as a crucial regulator of mitochondrial function and a gatekeeper, plays a pivotal role in governing cellular destiny through the control of ion and respiratory metabolite flux. The ability of resveratrol (RES), which is a potent phytoalexin with antioxidant and anti-inflammatory properties, to regulate VDAC1 in PD is unknown. The objective of this study was to evaluate the role of VDAC1 in the pathological process of PD and to explore the mechanism by which resveratrol protects dopaminergic neurons by regulating VDAC1 to maintain the mitochondrial permeability transition pore (mPTP) and calcium ion balance. The effects of RES on the motor and cognitive abilities of A53T mice were evaluated by using small animal behavioral tests. Various techniques, including immunofluorescence staining, transmission electron microscopy, enzyme-linked immunoadsorption, quantitative polymerase chain reaction (PCR), and Western blotting, among others, were employed to assess the therapeutic impact of RES on neuropathy associated with PD and its potential in regulating mitochondrial VDAC1. The findings showed that RES significantly improved motor and cognitive dysfunction and restored mitochondrial function, thus reducing oxidative stress levels in A53T mice. A significant positive correlation was observed between the protein expression level of VDAC1 and mitochondrial α-syn expression, as well as disease progression, whereas no such correlation was found in VDAC2 and VDAC3. Administration of RES resulted in a significant decrease in the protein expression of VDAC1 and in the protein expression of α-syn both in vivo and in vitro. In addition, we found that RES prevents excessive opening of the mPTP in dopaminergic neurons. This may prevent the abnormal aggregation of α-syn in mitochondria and the release of mitochondrial apoptosis signals. Furthermore, the activation of VDAC1 reversed the resveratrol-induced decrease in the accumulation of α-syn in the mitochondria. These findings highlight the potential of VDAC1 as a therapeutic target for PD and identify the mechanism by which resveratrol alleviates PD-related pathology by modulating mitochondrial VDAC1.

13.
Chem Commun (Camb) ; 60(45): 5832-5835, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38747248

ABSTRACT

We report an electron-insulating layer of Li2O nanoparticles passivating a Li-rich Li-Cu-Zn ternary alloy as an advanced Li anode. The insulating layer ensures Li deposition below the top protective layer and inhibits side reactions effectively. Additionally, the ternary alloy framework offers superior lithiophilicity and robust mechanical stability. Galvanostatic measurements demonstrate a prolonged lifespan of symmetric cells for over 1200 h at 1 mA cm-2 and 1 mA h cm-2.

14.
ACS Appl Mater Interfaces ; 16(21): 27291-27300, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38743291

ABSTRACT

Metal-organic frameworks (MOFs) as promising electrocatalysts have been widely studied, but their performance is limited by conductivity and coordinating saturation. This study proposes a cationic (V) modification strategy and evaluates its effect on the electrocatalytic performance of CoFe-MOF nanosheet arrays. The optimal V-CoFe-MOF/NF electrocatalyst exhibits excellent oxygen-evolution reaction (OER)/hydrogen-evolution reaction (HER) performance (231 mV at 100 mA cm-2/86 mV at 10 mA cm-2) in alkaline conditions, with its OER durability exceeding 400 h without evident degradation. Furthermore, as a bifunctional electrocatalyst for water splitting, a small cell voltage is achieved (1.60 V at 10 mA cm-2). The practicability of the catalyst is further evaluated by membrane electrode assembly (MEA), showing outstanding activity (1.53 V at 10 mA cm-2) and long-term stability (at 300 mA cm-2). Moreover, our results reveal the apparent reconstruction properties of V-CoFe-MOF/NF in alkaline electrolytes, where the partially dissolved V promotes the formation of more active ß-MOOH. The mechanism study shows the OER mechanism shifts to a lattice oxygen oxidation mechanism (LOM) after V doping, which directly avoids complex multistep adsorption mechanism and reduces reaction energy. This study provides a cation mediated strategy for designing efficient electrocatalysts.

15.
Drug Des Devel Ther ; 18: 1573-1582, 2024.
Article in English | MEDLINE | ID: mdl-38765878

ABSTRACT

Objective: Atrial fibrillation (AF) is the most common abnormal heart rhythm in elderly patients. Rivaroxaban has been widely used for stroke prevention. The anticoagulant response to rivaroxaban increases with age, which may make elderly patients susceptible to adverse outcomes resulting from small differences in bioavailability between generic and brand products. Methods: We designed a cohort study of ≥65-year-old inpatients with AF. Sociodemographic and laboratory measures of qualified patients who received brand or generic rivaroxaban for at least 72 hours at the study hospital from January 2021 to June 2023 were collected retrospectively. The primary outcome was the incidence of bleeding. Results: A total of 1008 qualifying patients were included for analysis, with 626 (62.1%) receiving brand rivaroxaban and 382 (37.9%) receiving generic rivaroxaban. After propensity score matching and weighting to account for confounders, the odds ratios comparing brand vs generic rivaroxaban (95% confidence intervals) for the bleeding was 1.15 (0.72-1.82). Results from subgroup analyses of patients with age ≥85, HAS-BLED score ≥ 3, containment of antiplatelet drugs, and female patients were consistent with the primary analysis. Conclusion: It provides evidence regarding the clinical safety outcome of generic rivaroxaban in the elderly AF population that may be particularly susceptible to adverse outcomes resulting from small allowable differences in pharmacokinetics.


Subject(s)
Atrial Fibrillation , Drugs, Generic , Factor Xa Inhibitors , Hemorrhage , Rivaroxaban , Humans , Atrial Fibrillation/drug therapy , Rivaroxaban/adverse effects , Rivaroxaban/administration & dosage , Rivaroxaban/pharmacokinetics , Aged , Female , Hemorrhage/chemically induced , Male , Aged, 80 and over , Drugs, Generic/adverse effects , Drugs, Generic/therapeutic use , Drugs, Generic/pharmacokinetics , Drugs, Generic/administration & dosage , Retrospective Studies , Factor Xa Inhibitors/adverse effects , Factor Xa Inhibitors/pharmacokinetics , Factor Xa Inhibitors/administration & dosage , Inpatients , Cohort Studies , Stroke/prevention & control
16.
Hortic Res ; 11(5): uhae081, 2024 May.
Article in English | MEDLINE | ID: mdl-38766530

ABSTRACT

BTB and TAZ domain proteins (BTs) function as specialized adaptors facilitating substrate recognition of the CUL3-RING ubiquitin ligase (CRL3) complex that targets proteins for ubiquitination in reaction to diverse pressures. Nonetheless, knowledge of the molecular mechanisms by which the apple scaffold protein MdBT2 responds to external and internal signals is limited. Here we demonstrate that a putative Ca 2+ sensor, calmodulin-like 15 (MdCML15), acts as an upstream regulator of MdBT2 to negatively modulate its functions in plasma membrane H+-ATPase regulation and iron deficiency tolerance. MdCML15 was identified to be substantially linked to MdBT2, and to result in the ubiquitination and degradation of the MdBT2 target protein MdbHLH104. Consequently, MdCML15 repressed the MdbHLH104 target, MdAHA8's expression, reducing levels of a specific membrane H+-ATPase. Finally, the phenotype of transgenic apple plantlets and calli demonstrated that MdCML15 modulates membrane H+-ATPase-produced rhizosphere pH lowering alongside iron homeostasis through an MdCML15-MdBT2-MdbHLH104-MdAHA8 pathway. Our results provide new insights into the relationship between Ca2+ signaling and iron homeostasis.

17.
Chem Commun (Camb) ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38805249

ABSTRACT

We present a facile strategy to achieve color-tunability room-temperature phosphorescence (RTP) nanoprobes by doping mineral acids (i.e., boric acid and phosphoric acid) in an organic silicon scaffold through a cross-linking process. Such RTP nanoprobes exhibit inherent tunable phosphorescence (from 420-650 nm) with long lifetime (emission lasting for ∼5-15 s, RTP lifetime: ∼0.53-2.11 s) and high quantum yields (∼13.1-43.0%). Therefore, the as-prepared nanoprobes enable multiple imaging in live cells with a high signal-to-background ratio value of ∼52.

18.
J Appl Toxicol ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38644760

ABSTRACT

Prolonged exposure to environments with high concentrations of crystalline silica (CS) can lead to silicosis. Macrophages play a crucial role in the pathogenesis of silicosis. In the process of silicosis, silica (SiO2) invades alveolar macrophages (AMs) and induces mitophagy which usually exists in three states: normal, excessive, and/or deficiency. Different mitophagy states lead to corresponding toxic responses, including successful macrophage repair, injury, necrosis, apoptosis, and even pulmonary fibrosis. This is a complex process accompanied by various cytokines. Unfortunately, the details have not been fully systematically summarized. Therefore, it is necessary to elucidate the role of macrophage mitophagy in SiO2-induced pulmonary fibrosis by systematic analysis on the literature reports. In this review, we first summarized the current data on the macrophage mitophagy in the development of SiO2-induced pulmonary fibrosis. Then, we introduce the molecular mechanism on how SiO2-induced mitophagy causes pulmonary fibrosis. Finally, we focus on introducing new therapies based on newly developed mitophagy-inducing strategies. We conclude that macrophage mitophagy plays a multifaceted role in the progression of SiO2-induced pulmonary fibrosis, and reprogramming the macrophage mitophagy state accordingly may be a potential means of preventing and treating pulmonary fibrosis.

19.
Front Oncol ; 14: 1358422, 2024.
Article in English | MEDLINE | ID: mdl-38577343

ABSTRACT

Prostate cancer is a major contributor to male cancer-related mortality globally. It has a particular affinity for the skeletal system with metastasis to bones seriously impacting prognosis. The identification of prostate cancer biomarkers can significantly enhance diagnosis and patient monitoring. Research has found that cancer and metastases exhibit abnormal expression of numerous non-coding RNA. Some of these RNA facilitate prostate cancer bone metastasis by activating downstream signaling pathways, while others inhibit this process. Elucidating the functional processes of non-coding RNA in prostate cancer bone metastasis will likely lead to innovative treatment strategies for this malignant condition. In this review, the mechanistic role of the various RNA in prostate cancer is examined. Our goal is to provide a new avenue of approach to the diagnosis and treatment of bone metastasis in this cancer.

20.
Front Plant Sci ; 15: 1327507, 2024.
Article in English | MEDLINE | ID: mdl-38562563

ABSTRACT

Introduction: Rice (Oryza sativa) serves as a vital staple crop that feeds over half the world's population. Optimizing rice breeding for increasing grain yield is critical for global food security. Heading-date-related or Flowering-time-related traits, is a key factor determining yield potential. However, traditional manual phenotyping methods for these traits are time-consuming and labor-intensive. Method: Here we show that aerial imagery from unmanned aerial vehicles (UAVs), when combined with deep learning-based panicle detection, enables high-throughput phenotyping of heading-date-related traits. We systematically evaluated various state-of-the-art object detectors on rice panicle counting and identified YOLOv8-X as the optimal detector. Results: Applying YOLOv8-X to UAV time-series images of 294 rice recombinant inbred lines (RILs) allowed accurate quantification of six heading-date-related traits. Utilizing these phenotypes, we identified quantitative trait loci (QTL), including verified loci and novel loci, associated with heading date. Discussion: Our optimized UAV phenotyping and computer vision pipeline may facilitate scalable molecular identification of heading-date-related genes and guide enhancements in rice yield and adaptation.

SELECTION OF CITATIONS
SEARCH DETAIL
...