Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 29(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38792061

ABSTRACT

Schisandra sphenanthera Rehd. et Wils., as a traditional Chinese medicine, has important medicinal value. In the market, the availability of the fruit of S. sphenanthera mainly relies on wild picking, but many canes and leaves are discarded during wild collection, resulting in a waste of resources. The canes and leaves of S. sphenanthera contain various bioactive ingredients and can be used as spice, tea, and medicine and so present great utilization opportunities. Therefore, it is helpful to explore the effective components and biological activities of the canes and leaves to utilize S. sphenanthera fully. In this study, the response surface method with ultrasound was used to extract the total triterpenoids from the canes and leaves of S. sphenanthera at different stages. The content of total triterpenoids in the leaves at different stages was higher than that in the canes. The total triterpenoids in the canes and leaves had strong antioxidant and antibacterial abilities. At the same time, the antibacterial activity of the total triterpenoids against Bacillus subtilis and Pseudomonas aeruginosa was stronger than that against Staphylococcus aureus and Escherichia coli. This study provides the foundation for the development and utilization of the canes and leaves that would relieve the shortage of fruit resources of S. sphenanthera.


Subject(s)
Anti-Bacterial Agents , Plant Extracts , Plant Leaves , Schisandra , Triterpenes , Schisandra/chemistry , Triterpenes/chemistry , Triterpenes/pharmacology , Triterpenes/isolation & purification , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Plant Leaves/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry , Microbial Sensitivity Tests , Fruit/chemistry
2.
PeerJ ; 12: e17240, 2024.
Article in English | MEDLINE | ID: mdl-38685939

ABSTRACT

Background: Schisandra sphenanthera Rehd. et Wils. is a plant used in traditional Chinese medicine (TCM). However, great differences exist in the content of active secondary metabolites in various parts of S. sphenanthera. Do microorganisms critically influence the accumulation of active components in different parts of S. sphenanthera? Methods: In this study, 16S/ITS amplicon sequencing analysis was applied to unravel microbial communities in rhizospheric soil and different parts of wild S. sphenanthera. At the same time, the active secondary metabolites in different parts were detected, and the correlation between the secondary metabolites and microorganisms was analyzed. Results: The major components identified in the essential oils were sesquiterpene and oxygenated sesquiterpenes. The contents of essential oil components in fruit were much higher than that in stem and leaf, and the dominant essential oil components were different in these parts. The dominant components of the three parts were γ-muurolene, δ-cadinol, and trans farnesol (stem); α-cadinol and neoisolongifolene-8-ol (leaf); isosapathulenol, α-santalol, cedrenol, and longiverbenone (fruit). The microbial amplicon sequences were taxonomically grouped into eight (bacteria) and seven (fungi) different phyla. Community diversity and composition analyses showed that different parts of S. sphenanthera had similar and unique microbial communities, and functional prediction analysis showed that the main functions of microorganisms were related to metabolism. Moreover, the accumulation of secondary metabolites in S. sphenanthera was closely related to the microbial community composition, especially bacteria. In endophytic bacteria, Staphylococcus and Hypomicrobium had negative effects on five secondary metabolites, among which γ-muurolene and trans farnesol were the dominant components in the stem. That is, the dominant components in stems were greatly affected by microorganisms. Our results provided a new opportunity to further understand the effects of microorganisms on the active secondary metabolites and provided a basis for further research on the sustainable utilization of S. sphenanthera.


Subject(s)
Schisandra , Schisandra/metabolism , Schisandra/chemistry , Soil Microbiology , Microbiota/genetics , Oils, Volatile/metabolism , Secondary Metabolism , Plant Stems/microbiology , Plant Stems/metabolism , Sesquiterpenes/metabolism , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism
3.
Plants (Basel) ; 12(3)2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36771657

ABSTRACT

Sinopodophyllum hexandrum is a perennial alpine herb producing the anti-cancer metabolite podophyllotoxin (PPT). Although the adaptation of S. hexandrum to high altitudes has been demonstrated and the effects of temperature, precipitation, and UV-B light on plant growth and metabolite accumulation have been studied, knowledge on the role of flavonoid biosynthesis in adapting to high altitudes is limited. In this study, light intensity, amount and type of flavonoids, and differentially expressed proteins (DEPs) and genes (DEGs) at 2300 and 3300 m were analyzed by HPLC, proteomic, transcriptomic, and qRT-PCR analysis. We found that higher light intensity correlated with greater flavonoid, flavonol, and anthocyanin content as well as higher anthocyanin to total flavonoid and flavonol ratios observed at the higher altitude. Based on proteomic and transcriptomic analyses, nine DEPs and 41 DEGs were identified to be involved in flavonoid biosynthesis and light response at 3300 m. The relative expression of nine genes (PAL, CHS1, IFRL, ANS, MYB4, BHLH137, CYP6, PPO1, and ABCB19) involved in flavonoid biosynthesis and seven genes (HSP18.1, HSP70, UBC4, ERF5, ERF9, APX3, and EX2) involved in light stress were observed to be up-regulated at 3300 m compared with 2300 m. These findings indicate that light intensity may play a regulatory role in enhancing flavonoid accumulation that allows S. hexandrum to adapt to elevated-altitude coupled with high light intensity.

SELECTION OF CITATIONS
SEARCH DETAIL
...