Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Environ Sci Technol ; 58(19): 8228-8238, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38695658

ABSTRACT

Inhalation of fine particulate matter PM2.5-bound arsenic (PM2.5-As) may cause significant cardiovascular damage, due to its high concentration, long transmission range, and good absorption efficiency in organisms. However, both the contribution and the effect of the arsenic exposure pathway, with PM2.5 as the medium, on cardiovascular system damage in nonferrous smelting sites remain to be studied. In this work, a one-year site sample collection and analysis work showed that the annual concentration of PM2.5-As reached 0.74 µg/m3, which was 120 times the national standard. The predominant species in the PM2.5 samples were As (V) and As (III). A panel study among workers revealed that PM2.5-As exposure dominantly contributed to human absorption of As. After exposure of mice to PM2.5-As for 8 weeks, the accumulation of As in the high exposure group reached equilibrium, and its bioavailability was 24.5%. A series of animal experiments revealed that PM2.5-As exposure induced cardiac injury and dysfunction at the environmental relevant concentration and speciation. By integrating environmental and animal exposure assessments, more accurate health risk assessment models exposed to PM2.5-As were established for metal smelting areas. Therefore, our research provides an important scientific basis for relevant departments to formulate industry supervision, prevention and control policies.


Subject(s)
Arsenic , Particulate Matter , Humans , Mice , Animals , Occupational Exposure , Cardiovascular Diseases , Risk Assessment , Biological Availability , Air Pollutants , Metallurgy
2.
Mol Oncol ; 17(12): 2743-2766, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37356089

ABSTRACT

Although early diagnosis and therapeutic advances have transformed the living quality and outcome of cancer patients, the poor prognosis for metastatic patients has not been significantly improved. Mechanisms underlying the complexity of metastasis cannot be simply determined by the straightforward 'cause-and-effect relationships'. We have developed a 'dry-lab-driven knowledge discovery and wet-lab validation' approach to embrace the complexity of cancer and metastasis. We have revealed for the first time that polymetastatic (POL) melanoma cells can utilize both the secretory protein pathway (S100A11-Sec23a) and the exosomal crosstalk (miR-487a-5p) to transfer their 'polymetastatic competency' to the oligometastatic (OL) melanoma cells, via synergistic co-targeting of the tumor-suppressor Nudt21. The downstream deregulated glycolysis was verified to regulate metastatic colonization efficiency. Further, two gene sets conferring independent prognosis in melanoma were identified, which have the potential for clinical translation and merit future clinical validation.


Subject(s)
Exosomes , Melanoma , MicroRNAs , Humans , Melanoma/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Biological Transport , Exosomes/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , S100 Proteins/genetics , S100 Proteins/metabolism , Cleavage And Polyadenylation Specificity Factor/genetics , Cleavage And Polyadenylation Specificity Factor/metabolism
3.
J Hazard Mater ; 449: 131050, 2023 05 05.
Article in English | MEDLINE | ID: mdl-36821903

ABSTRACT

Mixed bromine/chlorine transformation products of tetrabromobisphenol A (ClyBrxBPAs) are mixed halogenated-type compounds recently identified in electronic waste dismantling sites. There are a lack of toxicity data on these compounds. To study their development toxicity, the proliferation toxicity was investigated using human embryonic stem cells (hESC) exposed to the lowest effective dose of two ClyBrxBPA analogues (2-chloro-2',6-dibromobisphenol A and 2,2'-dichloro-6-monobromobisphenol A). For comparison, tetrabromobisphenol A, 2,2',6-tribromobisphenol A, and bisphenol A were also assessed. It was observed that ClyBrxBPAs inhibited hESCs proliferation in a concentration-dependent manner. The cell bioaccumulation efficiency of ClyBrxBPAs was higher than that of tetrabromobisphenol A. Also, ClyBrxBPAs were more toxic than tetrabromobisphenol A, with 2,2'-dichloro-6-monobromobisphenol A exhibiting the most potent toxicity. Furthermore, flow cytometry and oxidative stress results showed that increased reactive oxygen species raised the degree of apoptosis and reduced DNA synthesis. Metabolomics analysis on the effect of ClyBrxBPAs on metabolic pathway alteration showed that ClyBrxBPAs mainly interfered with four metabolic pathways related to amino acid metabolism and biosynthesis. These results provide an initial perspective on the proliferation toxicity of ClyBrxBPAs, indicating development toxicity in children.


Subject(s)
Human Embryonic Stem Cells , Polybrominated Biphenyls , Child , Humans , Bromine/chemistry , Chlorine , Polybrominated Biphenyls/chemistry , Cell Proliferation
4.
Environ Sci Technol ; 57(4): 1743-1754, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36683337

ABSTRACT

Lead is known to have toxic effects on the cardiovascular system. Owing to its high concentration, transmission range, and absorption efficiency in organisms, inhalation of fine particulate matter (PM2.5)-bound lead (PM2.5-Pb) may cause significant cardiovascular damage. However, the contribution and adverse effects of PM2.5-Pb on workers and residents in non-ferrous metal smelting areas are not fully understood. In this work, the concentration and chemical speciation of PM2.5-Pb were analyzed to determine its pollution characteristics at a typical non-ferrous metal smelting site. A panel study conducted among factory workers revealed that PM2.5-Pb exposure makes an important contribution to the human absorption of Pb. Although the chemical speciation of PM2.5-Pb suggested poor water solubility, a high bioavailability was observed in mice (tissue average value: 50.1%, range: 31.1-71.1%) subjected to inhalation exposure for 8 weeks. Based on the bioavailability data, the relationship between PM2.5-Pb exposure and cardiovascular damage was evaluated in animal simulation experiments. Finally, a damage threshold and cardiovascular-specific risk assessment model were established for the non-ferrous metal smelting area. Our project not only accurately estimates the risk of PM2.5-bound heavy metals on the cardiovascular system but also offers a scientific basis for future prevention and therapy of PM2.5-Pb-related diseases.


Subject(s)
Air Pollutants , Cardiovascular Diseases , Metals, Heavy , Humans , Mice , Animals , Biological Availability , Cardiovascular Diseases/chemically induced , Cardiovascular Diseases/epidemiology , Lead , Environmental Monitoring , Risk Factors , Particulate Matter/analysis , Risk Assessment , Heart Disease Risk Factors , China , Air Pollutants/analysis
5.
Pharmacol Res ; 188: 106660, 2023 02.
Article in English | MEDLINE | ID: mdl-36642112

ABSTRACT

Despite the unprecedented advancement of cancer treatment, the prognosis for patients with metastatic stage of cancer remains poor. The challenge that underlines this clinical dilemma is the complexity of metastasis. The conventional experiment-driven discovery approaches (the "wet lab") yield overly simplified one-to-one mechanistic relationships that are inept of elucidating the complexity of metastasis. Metastasis research also suffers from the knowledge and skill deficiency of the individual investigators. The importance of the present study is the demonstration that the "dry-lab-driven discovery and wet-lab validation" approach can improve the efficiency of studying complex biological behaviors, and can yield more reliable, objective and comprehensive mechanistic findings that are have clinical significance. Specifically, we applied this approach to study the mechanisms that underline the involvement of exosomal miRNAs in transferring the metastatic capability between heterogenous melanoma cancer cells. We show that the highly metastatic melanoma tumor cells (POL) can transfer their metastatic competency to the low-metastatic melanoma tumor cells (OL) by exosomal miR-211-5p. The oncogenic activity of miR-211-5p is mediated by the target gene guanine nucleotide-binding protein subunit alpha-15 (GNA15) through modifying the immune function of the tumor microenvironment extrinsically; as well as through inhibiting pyroptosis and augmenting glycolysis within OL cells intrinsically. In addition, we show that exosomal sorting of miR-211-5p is like selective and is subjected to regulation by a transcriptional feedback loop between miR-211-5p and zinc finger FYVE-type containing 26 (ZFYVE26). Furthermore, the "8-genes pyroptosis Risk model" derived from LASSO regression analysis was verified as an independent prognostic factor for melanoma.


Subject(s)
GTP-Binding Protein alpha Subunits, Gq-G11 , Melanoma , MicroRNAs , Tumor Microenvironment , Humans , Glucose , Melanoma/metabolism , Melanoma/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Prognosis , Pyroptosis , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
6.
Stem Cell Rev Rep ; 19(1): 155-169, 2023 01.
Article in English | MEDLINE | ID: mdl-35296991

ABSTRACT

High mortality rate and poor survival in melanoma are associated with efficient metastatic colonization. The underlying mechanisms remain elusive. Elucidating the role of exosomes in mediating the interactions between cancer cells and the metastatic microenvironment has been focused on cancer cell derived exosomes in modulating the functions of stromal cells. Whether cancer stem cells (CSCs) can modify the metastatic properties of non-CSC cells, and whether exosomal crosstalk plays a role have not been demonstrated prior to this report. In this study, a paired M14 melanoma derivative cell line, i.e., melanoma parental cell (MPC) and its CSC derivative cell line melanoma stem cell (MSC) were employed. We demonstrated that exosomal crosstalk betwen MSCs and non-CSC MPCs is a new mechanism that underlies melanoma metastasis. Low metastatic melanoma cells (MPCs) can acquire the "metastatic power" from highly metastatic melanoma CSCs (MSCs). We illustrated an uncharacterized microRNA, miR-4535 in mediating such exosomal crosstalk. MSCs deliver its exosomal miR-4535 to the targeted MPCs. Upon entering MPCs, miR-4535 augments metastatic colonization of MPCs by inactivating the autophagy pathway.


Subject(s)
Melanoma , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Melanoma/genetics , Neoplastic Stem Cells/metabolism , Autophagy/genetics , Tumor Microenvironment/genetics
7.
Biol Res ; 55(1): 29, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36182945

ABSTRACT

BACKGROUND: Metastatic melanoma has a high mortality rate and poor survival. This is associated with efficient metastatic colonization, but the underlying mechanisms remain elusive. Communication between cancer stem cells (CSCs) and cancer cells plays an important role in metastatic dissemination. Whether cancer stem cells can alter the metastatic properties of non-CSC cells; and whether exosomal crosstalk can mediate such interaction, have not been demonstrated in melanoma prior to this report. RESULTS: The results revealed that exosomes secreted by highly metastatic melanoma CSCs (OL-SCs) promoted the invasiveness of the low metastatic melanoma cells (OL) and accelerated metastatic progression. miR-1268a was up-regulated in cells and exosomes of OL-SCs. Moreover, OL-SCs-derived exosomal miR-1268a, upon taking up by OL cells, promoted the metastatic colonization ability of OL cells in vitro and in vivo. In addition, the pro-metastatic activity of exosomal miR-1268a is achieved through inhibition of autophagy. CONCLUSION: Our study demonstrates that OL cells can acquire the "metastatic ability" from OL-SCs cells. OL-SCs cells achieves this goal by utilizing its exosomes to deliver functional miRNAs, such as miR-1268a, to the targeted OL cells which in turn augments metastatic colonization by inactivating the autophagy pathway in OL cells.


Subject(s)
Exosomes , Melanoma , MicroRNAs , Autophagy , Cell Line, Tumor , Exosomes/metabolism , Humans , Melanoma/metabolism , MicroRNAs/metabolism , Neoplasm Metastasis , Stem Cells
8.
Front Oncol ; 12: 895164, 2022.
Article in English | MEDLINE | ID: mdl-35669425

ABSTRACT

Melanoma is characterized by high rate of metastasis and mortality. Effective management of metastatic melanoma depends on renewed mechanistic understanding underlying melanoma progression and metastasis. The role of exosomes in mediating the interactions between cancer cells and the metastatic microenvironment is at the forefront of cancer research. Previous researches on the function of exosomes in metastasis have been primarily focused on tumor cell-derived exosomes in modifying the biological functions of stromal cells. Whether the cancer cells at the involved organ can modify the metastatic capability of each other has not been demonstrated. In this study, a paired M14 melanoma derivative cell line, i.e., M14-OL and POL, that we established and characterized were employed. Oligo-metastatic (M14-OL) and poly-metastatic (M14-POL) cell line were generated from three consecutive rounds of in vivo selection and passage. They exhibit high (POL cells) and low (OL cells) metastatic colonization efficiency in vivo, respectively. We show that exosomal crosstalk between metastatic cancer cells is a new mechanism of cancer metastasis. High-metastatic melanoma cells (POL) can augment the metastatic colonization capability of the low-metastatic melanoma cells (OL). POL achieves this goal by utilizing its exosomes to deliver functional miRNAs, in this case, miR-411-5p, to the OL cell. Upon entering OL cells, exosomal miR-411-5p enhance metastatic colonization efficiency by activation of the ERK signaling pathway. Moreover, miR-411-5p expression is higher in cancer tissues of other cancer types (colon, lung, rectum) compared with that of respective normal tissues. The clinical relevance of the present finding merits future investigations.

9.
Cell Death Discov ; 8(1): 188, 2022 Apr 09.
Article in English | MEDLINE | ID: mdl-35397647

ABSTRACT

The mean survival of metastatic melanoma is less than 1 year. While the high mortality rate is associated with the efficient metastatic colonization of the involved organs, the underlying mechanisms remain elusive. The role of exosomes in facilitating the interactions between cancer cells and the metastatic microenvironment has received increasing attention. Previous studies on the role of exosomes in metastasis have been heavily focused on cancer cell-derived exosomes in modulating the functions of stromal cells. Whether the extravasated neighboring cancer cells at the distant organ can alter the metastatic properties of one another, a new mechanism of metastatic colonization, has not been demonstrated prior to this report. In this study, a paired M4 melanoma derivative cell lines, i.e., M14-OL and POL, that we established and characterized were employed. They exhibit high (POL cells) and low (OL cells) metastatic colonization efficiency in vivo, respectively. We show that exosomal crosstalk between metastatic cancer cells is a new mechanism that underlies cancer metastasis and heterogeneity. Low metastatic melanoma cells (OL) can acquire the "metastatic power" from highly metastatic melanoma cells (POL). POL achieves this goal by utilizing its exosomes to deliver functional miRNAs, such as miR-199a-1-5p, to the targeted OL cell which in turn inactivates cell cycle inhibitor CDKN1B and augments metastatic colonization.

11.
Cell Commun Signal ; 20(1): 22, 2022 03 02.
Article in English | MEDLINE | ID: mdl-35236368

ABSTRACT

BACKGROUND: The genesis and developments of solid tumors, analogous to the renewal of healthy tissues, are driven by a subpopulation of dedicated stem cells, known as cancer stem cells (CSCs), that exhibit long-term clonal repopulation and self-renewal capacity. CSCs may regulate tumor initiation, growth, dormancy, metastasis, recurrence and chemoresistance. While autophagy has been proposed as a regulator of the stemness of CSCs, the underlying mechanisms requires further elucidation. METHODS: The CSC component in human melanoma cell lines M14 and A375 was isolated and purified by repetitive enrichments for cells that consistently display anchorage-independent spheroid growth. The stemness properties of the CSCs were confirmed in vitro by the expressions of stemness marker genes, the single-cell cloning assay and the serial spheroid formation assay. Subcutaneous tumor transplantation assay in BALB/c nude mice was performed to test the stemness properties of the CSCs in vivo. The autophagic activity was confirmed by the protein level of LC3 and P62, mRFP-LC3B punta and cytoplasmic accumulation of autolysosomes. The morphology of ER was detected with transmission electron microscopy. RESULTS: In the present study, by employing stable CSC cell lines derived from human melanoma cell lines M14 and A375, we show for the first time that Sec23a inhibits the self-renewal of melanoma CSCs via inactivation of ER-phagy. Mechanistically, inhibition of Sec23a reduces ER stress and consequently FAM134B-induced ER-phagy. Furthermore, TCGA data mining and analysis show that Sec23a is a favorable diagnostic and prognostic marker for human skin cutaneous melanoma. CONCLUSION: This study has elucidated a new mechanism underlying the regulation of autophagy on stemness, i.e. CSCs can exploit the SEC23A/ER-stress/FAM134B/ER-phagy axis for the self-renewal. These observations provide new ideas for exploration of the regulatory network of CSC self-renewal to develop CSCs-based therapy strategies for malignant tumors. Video Abstract.


Subject(s)
Melanoma , Skin Neoplasms , Animals , Autophagy , Cell Line, Tumor , Melanoma/pathology , Mice , Mice, Nude , Neoplastic Stem Cells/metabolism , Skin Neoplasms/metabolism , Melanoma, Cutaneous Malignant
12.
Biol. Res ; 55: 29-29, 2022. ilus, graf
Article in English | LILACS | ID: biblio-1403568

ABSTRACT

BACKGROUND: Metastatic melanoma has a high mortality rate and poor survival. This is associated with efficient metastatic colonization, but the underlying mechanisms remain elusive. Communication between cancer stem cells (CSCs) and cancer cells plays an important role in metastatic dissemination. Whether cancer stem cells can alter the metastatic properties of non-CSC cells; and whether exosomal crosstalk can mediate such interaction, have not been demonstrated in melanoma prior to this report. RESULTS: The results revealed that exosomes secreted by highly metastatic melanoma CSCs (OL-SCs) promoted the invasiveness of the low metastatic melanoma cells (OL) and accelerated metastatic progression. miR-1268a was up-regulated in cells and exosomes of OL-SCs. Moreover, OL-SCs-derived exosomal miR-1268a, upon taking up by OL cells, promoted the metastatic colonization ability of OL cells in vitro and in vivo. In addition, the pro-metastatic activity of exosomal miR-1268a is achieved through inhibition of autophagy. CONCLUSION: Our study demonstrates that OL cells can acquire the "metastatic ability" from OL-SCs cells. OL-SCs cells achieves this goal by utilizing its exosomes to deliver functional miRNAs, such as miR-1268a, to the targeted OL cells which in turn augments metastatic colonization by inactivating the autophagy pathway in OL cells.


Subject(s)
Humans , MicroRNAs/metabolism , Exosomes/metabolism , Melanoma/metabolism , Autophagy , Stem Cells , Cell Line, Tumor , Neoplasm Metastasis
13.
Front Genet ; 12: 672832, 2021.
Article in English | MEDLINE | ID: mdl-34456965

ABSTRACT

Clinical data mining and bioinformatics analysis can be employed effectively to elucidate the function and underlying mechanisms of the gene of interest. Here, we have proposed a framework for the identification and validation of independent biomarkers in human cancer and for mechanistic profiling using gene sets enrichment analysis and pathway analysis. This is followed by validation with in vitro experiments. Using this framework to analyze the clinical relevance of SEC23A, we have discovered the prognostic potential of SEC23A in different cancers and identified SEC23A as an independent prognostic factor for poor prognosis in bladder cancer, which implicates SEC23A, for the first time, as an oncogene. Bioinformatic analyses have elucidated an association between SEC23A expression and the upregulation of the MAPK signaling pathway. Using the T24 human bladder cell line, we confirmed that knockdown of SEC23A expression could effectively impact the MAPK signaling pathway. Further, through PCR verification, we showed that MEF2A, one of the key genes of the MAPK signaling pathway, might be a downstream factor of the SEC23A gene.

14.
Int J Biol Sci ; 17(12): 3000-3012, 2021.
Article in English | MEDLINE | ID: mdl-34421345

ABSTRACT

Metastasis of melanoma to the distant organs is a multistep process in which the tumor microenvironment (TME) may play an important role. However, the relationship between metastatic progression and TME is intricate. In the present study, using melanoma derivative cell lines OL (oligometastatic) and POL (polymetastatic) that differ in their metastatic colonization capability, we have elucidated a new mechanism involving "SEC23A-PF4-MAPK/ERK axis" in which PF4 transported by COPII hinders metastasis through inhibition of MAPK/ERK signaling pathway. Furthermore, SPARC can act cooperatively to enhance the inhibition of Pf4 on ERK phosphorylation and melanoma cell metastasis. Our findings show the possibility of targeting cancer cell secretome for therapeutic development.


Subject(s)
MAP Kinase Signaling System , Melanoma, Experimental/pathology , Osteonectin/metabolism , Platelet Factor 4/metabolism , Vesicular Transport Proteins/metabolism , Animals , Cell Line, Tumor , Melanoma, Experimental/genetics , Melanoma, Experimental/metabolism , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasm Metastasis , Phosphorylation , Tumor Microenvironment
15.
FEBS Open Bio ; 11(7): 1997-2007, 2021 07.
Article in English | MEDLINE | ID: mdl-34051059

ABSTRACT

Mitophagy, a form of autophagy, plays a role in cancer development, progression and recurrence. Cancer stem cells (CSCs) also play a key role in these processes, although it not known whether mitophagy can regulate the stemness of CSCs. Here, we employed the A549-SD human non-small cell lung adenocarcinoma CSC model that we have developed and characterized to investigate the effect of mitophagy on the stemness of CSCs. We observed a positive relationship between mitophagic activity and the stemness of lung CSCs. At the mechanistic level, our results suggest that augmentation of mitophagy in lung CSCs can be induced by FIS1 through mitochondrial fission. In addition, we assessed the clinical relevance of FIS1 in lung adenocarcinoma using The Cancer Genome Atlas database. An elevation in FIS1, when observed together with other prognostic markers for lung cancer progression, was found to correlate with shorter overall survival.


Subject(s)
Mitophagy , Neoplasms , Autophagy , Humans , Lung , Membrane Proteins , Mitochondrial Dynamics/genetics , Mitochondrial Proteins/genetics , Neoplastic Stem Cells/pathology
16.
Cell Death Dis ; 12(1): 98, 2021 01 19.
Article in English | MEDLINE | ID: mdl-33468994

ABSTRACT

It has been postulated that cancer stem cells (CSCs) are involved in all aspects of human cancer, although the mechanisms governing the regulation of CSC self-renewal in the cancer state remain poorly defined. In the literature, both the pro- and anti-oncogenic activities of autophagy have been demonstrated and are context-dependent. Mounting evidence has shown augmentation of CSC stemness by autophagy, yet mechanistic characterization and understanding are lacking. In the present study, by generating stable human lung CSC cell lines with the wild-type TP53 (A549), as well as cell lines in which TP53 was deleted (H1229), we show, for the first time, that autophagy augments the stemness of lung CSCs by degrading ubiquitinated p53. Furthermore, Zeb1 is required for TP53 regulation of CSC self-renewal. Moreover, TCGA data mining and analysis show that Atg5 and Zeb1 are poor prognostic markers of lung cancer. In summary, this study has elucidated a new CSC-based mechanism underlying the oncogenic activity of autophagy and the tumor suppressor activity of p53 in cancer, i.e., CSCs can exploit the autophagy-p53-Zeb1 axis for self-renewal, oncogenesis, and progression.


Subject(s)
Lung Neoplasms/metabolism , Neoplastic Stem Cells/metabolism , Tumor Suppressor Protein p53/metabolism , A549 Cells , Animals , Autophagy , Heterografts , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplastic Stem Cells/pathology , Ubiquitination
17.
Cell Death Dis ; 11(8): 650, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32811814

ABSTRACT

Metastasis is the main cause of failure of cancer treatment. Metastatic colonization is regarded the most rate-limiting step of metastasis and is subjected to regulation by a plethora of biological factors and processes. On one hand, regulation of metastatic colonization by autophagy appears to be stage- and context-dependent, whereas mechanistic characterization remains elusive. On the other hand, interactions between the tumor cells and their microenvironment in metastasis have long been appreciated, whether the secretome of tumor cells can effectively reshape the tumor microenvironment has not been elucidated mechanistically. In the present study, we have identified "SEC23A-S1008-BECLIN1-autophagy axis" in the autophagic regulation of metastatic colonization step, a mechanism that tumor cells can exploit autophagy to exert self-restrain for clonogenic proliferation before the favorable tumor microenvironment is established. Specifically, we employed a paired lung-derived oligometastatic cell line (OL) and the homologous polymetastatic cell line (POL) from human melanoma cell line M14 that differ in colonization efficiency. We show that S100A8 transported by SEC23A inhibits metastatic colonization via autocrine activation of autophagy. Furthermore, we verified the clinical relevance of our experimental findings by bioinformatics analysis of the expression of Sec23a and S100A8 and the clinical-pathological associations. We demonstrate that higher Sec23a and Atg5 expression levels appear to be protective factors and favorable diagnostic (TNM staging) and prognostic (overall survival) markers for skin cutaneous melanoma (SKCM) and colon adenocarcinoma (COAD) patients. And we confirm the bioinformatics analysis results with SKCM biopsy samples.


Subject(s)
Calgranulin A/metabolism , Neoplasm Metastasis/pathology , Vesicular Transport Proteins/metabolism , Animals , Autocrine Communication/physiology , Autophagy/physiology , Beclin-1/metabolism , Calgranulin A/physiology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Humans , Male , Melanoma/pathology , Mice, SCID , Prognosis , RNA, Small Interfering/metabolism , Skin Neoplasms/pathology , Tumor Microenvironment/physiology , Vesicular Transport Proteins/physiology
18.
Int J Biol Sci ; 16(3): 447-459, 2020.
Article in English | MEDLINE | ID: mdl-32015681

ABSTRACT

The mortality rate of lung cancer remains the highest amongst all cancers despite of new therapeutic developments. While cancer stem cells (CSCs) may play a pivotal role in cancer, mechanisms underlying CSCs self-renewal and their relevance to cancer progression have not been clearly elucidated due to the lack of reliable and stable CSC cellular models. In the present study, we unveiled the novel oncogene function of cadherin 1 (Cdh1) via bioinformatic analysis in a broad spectrum of human cancers including lung adenocarcinoma (LUAD), adding a new dimension to the widely reported tumor suppressor function of Cdh1. Experimentally, we show for the first time that Cdh1 promotes the self-renewal of lung CSCs, consistent with its function in embryonic and normal stem cells. Using the LLC-Symmetric Division (LLC-SD) model, we have revealed an intricate cross-talk between the oncogenic pathway and stem cell pathway in which Cdh1 functions as an oncogene by promoting lung CSC renewal via the activation of the Phosphoinositide 3-kinase (PI3K) and inhibition of Mitogen-activated protein kinase (MAPK) pathways, respectively. In summary, this study has provided evidence demonstrating effective utilization of the normal stem cell renewal mechanisms by CSCs to promote oncogenesis and progression.


Subject(s)
Adenocarcinoma of Lung/metabolism , Cadherins/metabolism , Lung Neoplasms/metabolism , Adenocarcinoma of Lung/genetics , Animals , Blotting, Western , Cadherins/genetics , Cell Line, Tumor , Computational Biology/methods , Gene Expression Regulation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic/physiology , Gene Ontology , Humans , Lung Neoplasms/genetics , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Nude , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...