Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Neurobiol Aging ; 140: 12-21, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38701647

ABSTRACT

The aging population suffers from memory impairments. Slow-wave activity (SWA) is composed of slow (0.5-1 Hz) and delta (1-4 Hz) oscillations, which play important roles in long-term memory and working memory function respectively. SWA disruptions might lead to memory disturbances often experienced by older adults. We conducted behavioral tests in young and older C57BL/6 J mice. SWA was monitored using wide-field imaging with voltage sensors. Cell-specific calcium imaging was used to monitor the activity of excitatory and inhibitory neurons in these mice. Older mice exhibited impairments in working memory but not memory consolidation. Voltage-sensor imaging revealed aberrant synchronization of neuronal activity in older mice. Notably, we found older mice exhibited no significant alterations in slow oscillations, whereas there was a significant increase in delta power compared to young mice. Calcium imaging revealed hypoactivity in inhibitory neurons of older mice. Combined, these results suggest that neural activity disruptions might correlate with aberrant memory performance in older mice.


Subject(s)
Aging , Disease Models, Animal , Memory Disorders , Memory, Short-Term , Mice, Inbred C57BL , Animals , Aging/physiology , Aging/psychology , Memory Disorders/physiopathology , Memory Disorders/etiology , Memory Disorders/psychology , Memory, Short-Term/physiology , Neurons/physiology , Male , Calcium/metabolism
2.
Mol Neurodegener ; 18(1): 93, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38041158

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) patients exhibit memory disruptions and profound sleep disturbances, including disruption of deep non-rapid eye movement (NREM) sleep. Slow-wave activity (SWA) is a major restorative feature of NREM sleep and is important for memory consolidation. METHODS: We generated a mouse model where GABAergic interneurons could be targeted in the presence of APPswe/PS1dE9 (APP) amyloidosis, APP-GAD-Cre mice. An electroencephalography (EEG) / electromyography (EMG) telemetry system was used to monitor sleep disruptions in these animals. Optogenetic stimulation of GABAergic interneurons in the anterior cortex targeted with channelrhodopsin-2 (ChR2) allowed us to examine the role GABAergic interneurons play in sleep deficits. We also examined the effect of optogenetic stimulation on amyloid plaques, neuronal calcium as well as sleep-dependent memory consolidation. In addition, microglial morphological features and functions were assessed using confocal microscopy and flow cytometry. Finally, we performed sleep deprivation during optogenetic stimulation to investigate whether sleep restoration was necessary to slow AD progression. RESULTS: APP-GAD-Cre mice exhibited impairments in sleep architecture including decreased time spent in NREM sleep, decreased delta power, and increased sleep fragmentation compared to nontransgenic (NTG) NTG-GAD-Cre mice. Optogenetic stimulation of cortical GABAergic interneurons increased SWA and rescued sleep impairments in APP-GAD-Cre animals. Furthermore, it slowed AD progression by reducing amyloid deposition, normalizing neuronal calcium homeostasis, and improving memory function. These changes were accompanied by increased numbers and a morphological transformation of microglia, elevated phagocytic marker expression, and enhanced amyloid ß (Aß) phagocytic activity of microglia. Sleep was necessary for amelioration of pathophysiological phenotypes in APP-GAD-Cre mice. CONCLUSIONS: In summary, our study shows that optogenetic targeting of GABAergic interneurons rescues sleep, which then ameliorates neuropathological as well as behavioral deficits by increasing clearance of Aß by microglia in an AD mouse model.


Subject(s)
Alzheimer Disease , Humans , Mice , Animals , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Microglia/metabolism , Mice, Transgenic , Optogenetics , Calcium/metabolism , Sleep , GABAergic Neurons/metabolism , Disease Models, Animal , Amyloid beta-Protein Precursor/genetics
3.
Materials (Basel) ; 16(24)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38138696

ABSTRACT

Due to their distinct physical, chemical, and mechanical features, high-entropy alloys have significantly broadened the possibilities of designing metal materials, and are anticipated to hold a crucial position in key engineering domains such as aviation and aerospace. The fatigue performance of high-entropy alloys is a crucial aspect in assessing their applicability as a structural material with immense potential. This paper provides an overview of fatigue experiments conducted on high-entropy alloys in the past two decades, focusing on crack initiation behavior, crack propagation modes, and fatigue life prediction models.

4.
Gene ; 888: 147739, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37633535

ABSTRACT

The active ingredients of many medicinal plants are the secondary metabolites associated with the growth period. Lonicera japonica Thunb. is an important traditional Chinese medicine, and the flower development stage is an important factor that influences the quality of medicinal ingredients. In this study, transcriptomics and metabolomics were performed to reveal the regulatory mechanism of secondary metabolites during flowering of L. japonica. The results showed that the content of chlorogenic acid (CGA) and luteolin gradually decreased from green bud stage (Sa) to white flower stage (Sc), especially from white flower bud stage (Sb) to Sc. Most of the genes encoding the crucial rate-limiting enzymes, including PAL, C4H, HCT, C3'H, F3'H and FNSII, were down-regulated in three comparisons. Correlation analysis identified some members of the MYB, AP2/ERF, bHLH and NAC transcription factor families that are closely related to CGA and luteolin biosynthesis. Furthermore, differentially expressed genes (DEGs) involved in hormone biosynthesis, signalling pathways and flowering process were analysed in three flower developmental stage.


Subject(s)
Chlorogenic Acid , Lonicera , Chlorogenic Acid/metabolism , Luteolin , Gene Expression Profiling , Lonicera/genetics , Flowers/genetics , Flowers/metabolism , Hormones/metabolism , Transcriptome/genetics
5.
Sci Rep ; 13(1): 13075, 2023 08 11.
Article in English | MEDLINE | ID: mdl-37567942

ABSTRACT

Patients with Alzheimer's disease (AD) exhibit non-rapid eye movement (NREM) sleep disturbances in addition to memory deficits. Disruption of NREM slow waves occurs early in the disease progression and is recapitulated in transgenic mouse models of beta-amyloidosis. However, the mechanisms underlying slow-wave disruptions remain unknown. Because astrocytes contribute to slow-wave activity, we used multiphoton microscopy and optogenetics to investigate whether they contribute to slow-wave disruptions in APP/PS1 mice. The power but not the frequency of astrocytic calcium transients was reduced in APP/PS1 mice compared to nontransgenic controls. Optogenetic activation of astrocytes at the endogenous frequency of slow waves restored slow-wave power, reduced amyloid deposition, prevented neuronal calcium elevations, and improved memory performance. Our findings revealed malfunction of the astrocytic network driving slow-wave disruptions. Thus, targeting astrocytes to restore circuit activity underlying sleep and memory disruptions in AD could ameliorate disease progression.


Subject(s)
Alzheimer Disease , Mice , Animals , Alzheimer Disease/pathology , Optogenetics/adverse effects , Calcium , Astrocytes/metabolism , Mice, Transgenic , Calcium, Dietary , Disease Models, Animal , Brain/metabolism , Disease Progression , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics
6.
ACS Nano ; 17(16): 15379-15387, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37540827

ABSTRACT

Repulsive and long-range exciton-exciton interactions are crucial for the exploration of one-dimensional (1D) correlated quantum phases in the solid state. However, the experimental realization of nanoscale confinement of a 1D dipolar exciton has thus far been limited. Here, we demonstrate atomically precise lateral heterojunctions based at transitional-metal dichalcogenides (TMDCs) as a platform for 1D dipolar excitons. The dynamics and transport of the interfacial charge transfer excitons in a type II WSe2-WS1.16Se0.84 lateral heterostructure were spatially and temporally imaged using ultrafast transient reflection microscopy. The expansion of the exciton cloud driven by dipolar repulsion was found to be strongly density dependent and highly anisotropic. The interaction strength between the 1D excitons was determined to be ∼3.9 × 10-14 eV cm-2, corresponding to a dipolar length of 310 nm, which is a factor of 2-3 larger than the interlayer excitons at two-dimensional van der Waals vertical interfaces. These results suggest 1D dipolar excitons with large static in-plane dipole moments in lateral TMDC heterojunctions as an exciting system for investigating quantum many-body physics.

7.
Nat Chem ; 15(8): 1118-1126, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37337112

ABSTRACT

Exciton-exciton annihilation (EEA), an important loss channel in optoelectronic devices and photosynthetic complexes, has conventionally been assumed to be an incoherent, diffusion-limited process. Here we challenge this assumption by experimentally demonstrating the ability to control EEA in molecular aggregates using the quantum phase relationships of excitons. We employed time-resolved photoluminescence microscopy to independently determine exciton diffusion constants and annihilation rates in two substituted perylene diimide aggregates featuring contrasting excitonic phase envelopes. Low-temperature EEA rates were found to differ by more than two orders of magnitude for the two compounds, despite comparable diffusion constants. Simulated rates based on a microscopic theory, in excellent agreement with experiments, rationalize this EEA behaviour based on quantum interference arising from the presence or absence of spatial phase oscillations of delocalized excitons. These results offer an approach for designing molecular materials using quantum interference where low annihilation can coexist with high exciton concentrations and mobilities.

8.
Res Sq ; 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37163040

ABSTRACT

Patients with Alzheimer's disease (AD) exhibit non-rapid eye movement (NREM) sleep disturbances in addition to memory deficits. Disruption of NREM slow waves occurs early in the disease progression and is recapitulated in transgenic mouse models of beta-amyloidosis. However, the mechanisms underlying slow-wave disruptions remain unknown. Because astrocytes contribute to slow-wave activity, we used multiphoton microscopy and optogenetics to investigate whether they contribute to slow-wave disruptions in APP mice. The power but not the frequency of astrocytic calcium transients was reduced in APP mice compared to nontransgenic controls. Optogenetic activation of astrocytes at the endogenous frequency of slow waves restored slow-wave power, reduced amyloid deposition, prevented neuronal calcium elevations, and improved memory performance. Our findings revealed malfunction of the astrocytic network driving slow-wave disruptions. Thus, targeting astrocytes to restore circuit activity underlying sleep and memory disruptions in AD could ameliorate disease progression.

9.
J Am Chem Soc ; 145(8): 4800-4807, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36795997

ABSTRACT

Halide perovskite is a unique dynamical system, whose structural and chemical processes happening across different timescales have significant impact on its physical properties and device-level performance. However, due to its intrinsic instability, real-time investigation of the structure dynamics of halide perovskite is challenging, which hinders the systematic understanding of the chemical processes in the synthesis, phase transition, and degradation of halide perovskite. Here, we show that atomically thin carbon materials can stabilize ultrathin halide perovskite nanostructures against otherwise detrimental conditions. Moreover, the protective carbon shells enable atomic-level visualization of the vibrational, rotational, and translational movement of halide perovskite unit cells. Albeit atomically thin, protected halide perovskite nanostructures can maintain their structural integrity up to an electron dose rate of 10,000 e-/Å2·s while exhibiting unusual dynamical behaviors pertaining to the lattice anharmonicity and nanoscale confinement. Our work demonstrates an effective method to protect beam-sensitive materials during in situ observation, unlocking new solutions to study new modes of structure dynamics of nanomaterials.

10.
Commun Biol ; 5(1): 1323, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36460716

ABSTRACT

Alzheimer's disease (AD) is characterized by progressive memory loss and cognitive decline. These impairments correlate with early alterations in neuronal network activity in AD patients. Disruptions in the activity of individual neurons have been reported in mouse models of amyloidosis. However, the impact of amyloid pathology on the spontaneous activity of distinct neuronal types remains unexplored in vivo. Here we use in vivo calcium imaging with multiphoton microscopy to monitor and compare the activity of excitatory and two types of inhibitory interneurons in the cortices of APP/PS1 and control mice under isoflurane anesthesia. We also determine the relationship between amyloid accumulation and the deficits in spontaneous activity in APP/PS1 mice. We show that somatostatin-expressing (SOM) interneurons are hyperactive, while parvalbumin-expressing interneurons are hypoactive in APP/PS1 mice. Only SOM interneuron hyperactivity correlated with proximity to amyloid plaque. These inhibitory deficits were accompanied by decreased excitatory neuron activity in APP/PS1 mice. Our study identifies cell-specific neuronal firing deficits in APP/PS1 mice driven by amyloid pathology. These findings highlight the importance of addressing the complexity of neuron-specific deficits to ameliorate circuit dysfunction in Alzheimer's disease.


Subject(s)
Alzheimer Disease , Amyloidosis , Mice , Animals , Interneurons , Neurons , Disease Models, Animal , Plaque, Amyloid , Amyloidogenic Proteins
11.
iScience ; 25(11): 105319, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36246577

ABSTRACT

SARS-CoV-2 infection induces imbalanced immune response such as hyperinflammation in patients with severe COVID-19. Here, we studied the immunometabolic regulatory mechanisms for the pathogenesis of COVID-19. We depicted the metabolic landscape of immune cells, especially macrophages, from bronchoalveolar lavage fluid of patients with COVID-19 at single-cell level. We found that most metabolic processes were upregulated in macrophages from lungs of patients with mild COVID-19 compared to cells from healthy controls, whereas macrophages from severe COVID-19 showed downregulation of most of the core metabolic pathways including glutamate metabolism, fatty acid oxidation, citrate cycle, and oxidative phosphorylation, and upregulation of a few pathways such as glycolysis. Rewiring cellular metabolism by amino acid supplementation, glycolysis inhibition, or PPARγ stimulation reduces inflammation in macrophages stimulated with SARS-CoV-2. Altogether, this study demonstrates that metabolic imbalance of bronchoalveolar macrophages may contribute to hyperinflammation in patients with severe COVID-19 and provides insights into treating COVID-19 by immunometabolic modulation.

12.
J Phys Chem Lett ; 13(32): 7541-7546, 2022 Aug 18.
Article in English | MEDLINE | ID: mdl-35947432

ABSTRACT

Single-walled carbon nanotube (SWNT)-based devices are expected to play an important role in the next generation of electronic integrated circuits. As an important structural unit for SWNT-based electronics, the Schottky junction has a series of functions such as rectification, photoelectric detection, switching, etc. Here, we demonstrate a well-controlled localized radical reaction method to prepare an intramolecular SWNT Schottky junction with a closed edge. This junction exhibits strong gate-dependent rectifying behavior and a high rectification ratio of 962. Furthermore, the semiconducting part on the junction side could be effectively tuned from p-type doping to n-type doping, resulting in reversible rectifying behavior. Our work paves a new avenue for the design and synthesis of an SWNT Schottky junction, which is very important to future applications for carbon-based nanoelectronic devices.

13.
J Virol ; 96(9): e0003822, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35420442

ABSTRACT

Due to the limitation of human studies with respect to individual difference or the accessibility of fresh tissue samples, how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection results in pathological complications in lung, the main site of infection, is still incompletely understood. Therefore, physiologically relevant animal models under realistic SARS-CoV-2 infection conditions would be helpful to our understanding of dysregulated inflammation response in lung in the context of targeted therapeutics. Here, we characterized the single-cell landscape in lung and spleen upon SARS-CoV-2 infection in an acute severe disease mouse model that replicates human symptoms, including severe lung pathology and lymphopenia. We showed a reduction of lymphocyte populations and an increase of neutrophils in lung and then demonstrated the key role of neutrophil-mediated lung immunopathology in both mice and humans. Under severe conditions, neutrophils recruited by a chemokine-driven positive feedback produced elevated "fatal signature" proinflammatory genes and pathways related to neutrophil activation or releasing of granular content. In addition, we identified a new Cd177high cluster that is undergoing respiratory burst and Stfahigh cluster cells that may dampen antigen presentation upon infection. We also revealed the devastating effect of overactivated neutrophil by showing the highly enriched neutrophil extracellular traps in lung and a dampened B-cell function in either lung or spleen that may be attributed to arginine consumption by neutrophil. The current study helped our understanding of SARS-CoV-2-induced pneumonia and warranted the concept of neutrophil-targeting therapeutics in COVID-19 treatment. IMPORTANCE We demonstrated the single-cell landscape in lung and spleen upon SARS-CoV-2 infection in an acute severe disease mouse model that replicated human symptoms, including severe lung pathology and lymphopenia. Our comprehensive study revealed the key role of neutrophil-mediated lung immunopathology in SARS-CoV-2-induced severe pneumonia, which not only helped our understanding of COVID-19 but also warranted the concept of neutrophil targeting therapeutics in COVID-19 treatment.


Subject(s)
COVID-19 , Lung , Neutrophils , Animals , COVID-19/immunology , Disease Models, Animal , Humans , Lung/pathology , Lung/virology , Lymphopenia/virology , Mice , Neutrophils/immunology , SARS-CoV-2 , Spleen/pathology , Spleen/virology
14.
Biochem Biophys Res Commun ; 604: 96-103, 2022 05 14.
Article in English | MEDLINE | ID: mdl-35303685

ABSTRACT

Different regions and states of the human colon are likely to have a distinct influence on immune cell functions. Here we studied the immunometabolic mechanisms for spatial immune specialization and dysregulated immune response during ulcerative colitis at single-cell resolution. We revealed that the macrophages and CD8+ T cells in the lamina propria of the human colon possessed an effector phenotype and were more activated, while their lipid metabolism was suppressed compared with those in the epithelial. Also, IgA+ plasma cells accumulated in lamina propria of the sigmoid colon were identified to be more metabolically activated versus those in the cecum and transverse colon, and the improved metabolic activity was correlated with the expression of CD27. In addition to the immunometabolic reprogramming caused by spatial localization colon, we found dysregulated cellular metabolism was related to the impaired immune functions of macrophages and dendritic cells in patients with ulcerative colitis. The cluster of OSM+ inflammatory monocytes was also identified to play its role in resistance to anti-TNF treatment, and we explored targeted metabolic reactions that could reprogram them to a normal state. Altogether, this study revealed a landscape of metabolic reprogramming of human colonic immune cells in different locations and disease states, and offered new insights into treating ulcerative colitis by immunometabolic modulation.


Subject(s)
Colitis, Ulcerative , CD8-Positive T-Lymphocytes , Colon/metabolism , Humans , Intestinal Mucosa/metabolism , Single-Cell Analysis , Tumor Necrosis Factor Inhibitors
15.
Front Immunol ; 12: 644350, 2021.
Article in English | MEDLINE | ID: mdl-34489925

ABSTRACT

Tumor-infiltrating immune cells shape the tumor microenvironment and are closely related to clinical outcomes. Several transcription factors (TFs) have also been reported to regulate the antitumor activity and immune cell infiltration. This study aimed to quantify the populations of different immune cells infiltrated in tumor samples based on the bulk RNA sequencing data obtained from 50 cancer patients using the CIBERSORT and the EPIC algorithm. Weighted gene coexpression network analysis (WGCNA) identified eigengene modules strongly associated with tumorigenesis and the activation of CD4+ memory T cells, dendritic cells, and macrophages. TF genes FOXM1, MYBL2, TAL1, and ERG are central in the subnetworks of the eigengene modules associated with immune-related genes. The analysis of The Cancer Genome Atlas (TCGA) cancer data confirmed these findings and further showed that the expression of these potential TF genes regulating immune infiltration, and the immune-related genes that they regulated, was associated with the survival of patients within multiple cancers. Exome-seq was performed on 24 paired samples that also had RNA-seq data. The expression quantitative trait loci (eQTL) analysis showed that mutations were significantly more frequent in the regions flanking the TF genes compared with those of non-TF genes, suggesting a driver role of these TF genes regulating immune infiltration. Taken together, this study presented a practical method for identifying genes that regulate immune infiltration. These genes could be potential biomarkers for cancer prognosis and possible therapeutic targets.


Subject(s)
Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic/genetics , Immune System/metabolism , Neoplasms/genetics , Sequence Analysis, RNA/methods , Transcription Factors/genetics , Biomarkers, Tumor/immunology , Biomarkers, Tumor/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/pathology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Dendritic Cells/pathology , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic/immunology , Gene Regulatory Networks/genetics , Gene Regulatory Networks/immunology , Humans , Immune System/immunology , Immune System/pathology , Macrophages/immunology , Macrophages/metabolism , Macrophages/pathology , Mutation , Neoplasms/immunology , Neoplasms/metabolism , Prognosis , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
16.
Adv Mater ; 33(32): e2100791, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34219297

ABSTRACT

Surface passivation is an effective way to boost the efficiency and stability of perovskite solar cells (PSCs). However, a key challenge faced by most of the passivation strategies is reducing the interface charge recombination without imposing energy barriers to charge extraction. Here, a novel multifunctional semiconducting organic ammonium cationic interface modifier inserted between the light-harvesting perovskite film and the hole-transporting layer is reported. It is shown that the conjugated cations can directly extract holes from perovskite efficiently, and simultaneously reduce interface non-radiative recombination. Together with improved energy level alignment and the stabilized interface in the device, a triple-cation mixed-halide medium-bandgap PSC with an excellent power conversion efficiency of 22.06% (improved from 19.94%) and suppressed ion migration and halide phase segregation, which lead to a long-term operational stability, is demonstrated. This strategy provides a new practical method of interface engineering in PSCs toward improved efficiency and stability.

17.
J Mol Cell Biol ; 13(9): 662-675, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34081106

ABSTRACT

Meiosis produces the haploid gametes required by all sexually reproducing organisms, occurring in specific temperature ranges in different organisms. However, how meiotic thermotolerance is regulated remains largely unknown. Using the model organism Caenorhabditis elegans, here, we identified the synaptonemal complex (SC) protein SYP-5 as a critical regulator of meiotic thermotolerance. syp-5-null mutants maintained a high percentage of viable progeny at 20°C but produced significantly fewer viable progeny at 25°C, a permissive temperature in wild-type worms. Cytological analysis of meiotic events in the mutants revealed that while SC assembly and disassembly, as well as DNA double-strand break repair kinetics, were not affected by the elevated temperature, crossover designation, and bivalent formation were significantly affected. More severe homolog segregation errors were also observed at elevated temperature. A temperature switching assay revealed that late meiotic prophase events were not temperature-sensitive and that meiotic defects during pachytene stage were responsible for the reduced viability of syp-5 mutants at the elevated temperature. Moreover, SC polycomplex formation and hexanediol sensitivity analysis suggested that SYP-5 was required for the normal properties of the SC, and charge-interacting elements in SC components were involved in regulating meiotic thermotolerance. Together, these findings provide a novel molecular mechanism for meiotic thermotolerance regulation.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Meiosis , Synaptonemal Complex , Thermotolerance , Animals , Animals, Genetically Modified , Caenorhabditis elegans/physiology , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Computational Biology , Synaptonemal Complex/genetics , Synaptonemal Complex/metabolism
18.
Gene ; 768: 145263, 2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33122078

ABSTRACT

Translationally controlled tumor protein (TCTP) has various cellular functions and molecular interactions, many related to its growth-promoting and antiapoptotic properties. Recently, TCTP expression was reported to increases in insulin-resistant mice fed with high-fat diet. TCTP is a multifunctional protein, but its role in liver metabolism is unclear. Here, we investigated the function and mechanism of TCTP in HepG2 cells. Knock-down of TCTP led to 287 differentially expressed genes (DEGs) that were highly associated with cellular apoptosis and signal response, TNF and NF-κB signaling pathways, glycolysis/gluconeogenesis, insulin resistance, FoxO and insulin signaling pathways, adipocytokine and AMPK signaling pathways. shTCTP downregulated the expression of the key gluconeogenesis enzyme phosphoenolpyruvate carboxykinase (PCK1). Furthermore, TCTP regulated the alternative splicing of genes enriched in the phospholipid biosynthetic process and glycerophospholipid metabolism. We further showed that shTCTP down-regulated the intracellular levels of triglyceride and total cholesterol. Our results showed that TCTP regulates the liver cell transcriptome at both the transcriptional and alternative splicing levels. The TCTP regulatory network predicts the biological functions of TCTP in glucose and lipid metabolism, and also insulin resistance, which may be associated with liver metabolism and diseases such as nonalcoholic fatty liver disease.


Subject(s)
Biomarkers, Tumor/metabolism , Gene Expression Regulation/genetics , Insulin Resistance/genetics , Lipid Metabolism/genetics , Liver/metabolism , Alternative Splicing/genetics , Apoptosis/genetics , Blood Glucose/genetics , Cell Line, Tumor , Cholesterol/blood , Diet, High-Fat , Gluconeogenesis/genetics , Glucose/metabolism , Glycerophospholipids/metabolism , Glycolysis/genetics , Hep G2 Cells , Hepatocytes/metabolism , Humans , Intracellular Signaling Peptides and Proteins/metabolism , NF-kappa B/genetics , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Phosphoenolpyruvate Carboxykinase (GTP)/metabolism , RNA Interference , RNA, Small Interfering/genetics , Signal Transduction/genetics , Transcriptional Activation/genetics , Transcriptome/genetics , Triglycerides/blood , Tumor Necrosis Factor-alpha/genetics , Tumor Protein, Translationally-Controlled 1
19.
J Neuroinflammation ; 17(1): 364, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33261639

ABSTRACT

BACKGROUND: Secondary brain damage caused by the innate immune response and subsequent proinflammatory factor production is a major factor contributing to the high mortality of intracerebral haemorrhage (ICH). Nucleotide-binding oligomerization domain 1 (NOD1)/receptor-interacting protein 2 (RIP2) signalling has been reported to participate in the innate immune response and inflammatory response. Therefore, we investigated the role of NOD1/RIP2 signalling in mice with collagenase-induced ICH and in cultured primary microglia challenged with hemin. METHODS: Adult male C57BL/6 mice were subjected to collagenase for induction of ICH model in vivo. Cultured primary microglia and BV2 microglial cells (microglial cell line) challenged with hemin aimed to simulate the ICH model in vitro. We first defined the expression of NOD1 and RIP2 in vivo and in vitro using an ICH model by western blotting. The effect of NOD1/RIP2 signalling on ICH-induced brain injury volume, neurological deficits, brain oedema, and microglial activation were assessed following intraventricular injection of either ML130 (a NOD1 inhibitor) or GSK583 (a RIP2 inhibitor). In addition, levels of JNK/P38 MAPK, IκBα, and inflammatory factors, including tumour necrosis factor-α (TNF-α), interleukin (IL)-1ß, and inducible nitric oxide synthase (iNOS) expression, were analysed in ICH-challenged brain and hemin-exposed cultured primary microglia by western blotting. Finally, we investigated whether the inflammatory factors could undergo crosstalk with NOD1 and RIP2. RESULTS: The levels of NOD1 and its adaptor RIP2 were significantly elevated in the brains of mice in response to ICH and in cultured primary microglia, BV2 cells challenged with hemin. Administration of either a NOD1 or RIP2 inhibitor in mice with ICH prevented microglial activation and neuroinflammation, followed by alleviation of ICH-induced brain damage. Interestingly, the inflammatory factors interleukin (IL)-1ß and tumour necrosis factor-α (TNF-α), which were enhanced by NOD1/RIP2 signalling, were found to contribute to the NOD1 and RIP2 upregulation in our study. CONCLUSION: NOD1/RIP2 signalling played an important role in the regulation of the inflammatory response during ICH. In addition, a vicious feedback cycle was observed between NOD1/RIP2 and IL-1ß/TNF-α, which could to some extent result in sustained brain damage during ICH. Hence, our study highlights NOD1/RIP2 signalling as a potential therapeutic target to protect the brain against secondary brain damage during ICH.


Subject(s)
Cerebral Hemorrhage/metabolism , Cerebral Hemorrhage/pathology , Nod1 Signaling Adaptor Protein/metabolism , Receptor-Interacting Protein Serine-Threonine Kinase 2/metabolism , Animals , Cytokines/metabolism , Inflammation/metabolism , Inflammation/pathology , Male , Mice , Mice, Inbred C57BL , Microglia/metabolism , Signal Transduction/physiology
20.
J Cell Biol ; 219(5)2020 05 04.
Article in English | MEDLINE | ID: mdl-32211900

ABSTRACT

The synaptonemal complex (SC) is an ordered but highly dynamic structure assembled between homologous chromosomes to control interhomologous crossover formation, ensuring accurate meiotic chromosome segregation. However, the mechanisms regulating SC assembly and dynamics remain unclear. Here, we identified two new SC components, SYP-5 and SYP-6, in Caenorhabditis elegans that have distinct expression patterns and form distinct SC assembly units with other SYPs through stable interactions. SYP-5 and SYP-6 exhibit diverse in vivo SC regulatory functions and distinct phase separation properties in cells. Charge-interacting elements (CIEs) are enriched in SC intrinsically disordered regions (IDRs), and IDR deletion or CIE removal confirmed a requirement for these elements in SC regulation. Our data support the theory that multivalent weak interactions between the SC units drive SC formation and that CIEs confer multivalency to the assembly units.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , Chromosome Segregation/genetics , Synaptonemal Complex/genetics , Animals , Chromosome Pairing/genetics , Meiosis/genetics , Nuclear Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...