Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Food Chem ; 453: 139697, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38788652

ABSTRACT

Spiropidion developed by Syngenta shows high insecticidal and acaricidal activity against a wide range of sucking pests. In this study, according to the structure of spiropidion, two haptens were synthesized by introducing carboxyl groups from the ester group. After cell fusion, a monoclonal antibody (mAb 8B5) of spiropidion was obtained. The IC50 of the established heterologous indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) was 7.36 ng/mL, and its working range was 1.75-34.92 ng/mL. The average recoveries were 76.05-124.78% in the Yangtze River and citrus samples. Moreover, the ic-ELISA results of 15 citrus samples agreed well with ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Overall, the established ic-ELISA could be applied for the spiropidion residue monitor in food and agricultural samples.

2.
Int J Biol Macromol ; 269(Pt 2): 132279, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38734344

ABSTRACT

Aptasensors for detection of ochratoxin A (OTA) have been extensively studied, but the majority of them require costly and large-scale equipment as signal readers. Herein, a photothermal aptasensor capable of portable detection of OTA through a thermometer was developed on basis of aptamer structural switching and rolling circle amplification (RCA)-enriched DNAzyme. Oligonucleotides and alkaline phosphatase (ALP) modified magnetic beads were prepared. The binding of aptamers to OTA led to the release of ALP labeled complementary DNA. After magnetic separation, ALP catalyzed the padlock dephosphorylation, inhibiting the subsequent RCA reaction. This process converted the OTA concentration into the amount of the photothermal reagent oxTMB produced from the catalytic reaction induced by RCA-enriched DNAzyme. Under the optimal conditions, the detection limit (LOD) of this aptasensor was 2.28 nM in a clean buffer, while the LOD reached 2.43 nM in 2 % grape juice. The good performance of the photothermal aptasensor makes it possible to measure OTA pollution in low resource environments.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , DNA, Catalytic , Fruit and Vegetable Juices , Limit of Detection , Nucleic Acid Amplification Techniques , Ochratoxins , Vitis , Ochratoxins/analysis , DNA, Catalytic/chemistry , DNA, Catalytic/metabolism , Aptamers, Nucleotide/chemistry , Nucleic Acid Amplification Techniques/methods , Fruit and Vegetable Juices/analysis , Biosensing Techniques/methods , Vitis/chemistry , Food Contamination/analysis
3.
Food Chem ; 447: 138989, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38492297

ABSTRACT

Limonin is an intensely bitter and highly oxidized tetracyclic triterpenoid secondary metabolite, which is abundant in the Rutaceae and Meliaceae, especially in Citrus. In order to detect limonin content in complex substrates such as citrus and traditional Chinese medicine, monoclonal antibodies specifically recognizing limonin were prepared and an indirect competitive enzyme-linked immunosorbent assay (icELISA) was established. The median inhibition concentration (IC50) was 5.40 ng/mL and the linear range was 1.25-23.84 ng/mL. The average recoveries from citrus peel and pulp samples were 95.9%-118.8% and 77.5%-113.1%, respectively. Moreover, the contents of limonin in 6 citrus samples and 4 herbal samples were analyzed by icELISA and UPLC-MS, and the results of the two methods were consistent. This validation is sufficient to demonstrate that the developed immunoassay is applicable for the detection of limonin in citrus and herbal samples and has the advantage of high efficiency, sensitivity, and convenience.


Subject(s)
Citrus , Limonins , Antibodies, Monoclonal , Limonins/analysis , Enzyme-Linked Immunosorbent Assay/methods , Citrus/chemistry , Chromatography, Liquid , Tandem Mass Spectrometry
4.
Article in English | MEDLINE | ID: mdl-38295304

ABSTRACT

Pesticide residues in grapes from South and Southwest China were determined using the QuEChERS procedure and UHPLC-MS/MS and GC-MS/MS methods. The 4-year monitoring and survey showed 94.6% of the 1341 samples of grapes collected from eight main production areas contained one or multiple pesticide residues (above the respective LOQs). Overall, 40 pesticides were detected, including 24 fungicides, 12 insecticides, 2 acaricides and 2 plant growth modulators, of which one pesticide was unauthorised for use in treating grapes. Two or more pesticide residues were discovered in 87.4% of the samples (above the respective LOQs), and pesticide residues in 5.7% of the samples exceeded the MRLs, such as difenoconazole, cyhalothrin, propiconazole, etc. The main risk factors affecting the safety of grape before 2019 were difenoconazole, cyhalothrin and cyazofamid. After 2019, however, the frequency of occurrence of the above pesticides significantly declined, and the banned or restricted pesticides including omethoate were not found, which was credited to the stricter supervision and management policies by local governments. Despite the high detection rates and multi-residue occurrence of pesticides in grapes, about 84% of the samples were compliant with regulatory standards. Moreover, the accumulative chronic diet risk determined from ADI is very low. This study and timely monitoring can ensure that grape growers comply with GAP and minimise the occurrence of residues.


Subject(s)
Nitriles , Pesticide Residues , Pesticides , Pyrethrins , Vitis , Tandem Mass Spectrometry , Risk Assessment , China
5.
Food Res Int ; 174(Pt 1): 113498, 2023 12.
Article in English | MEDLINE | ID: mdl-37986498

ABSTRACT

The present work reported the application of an ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method for simultaneous analysis of spiropidion and its five major metabolites in sweet orange fruit and by-products throughout the whole industrial juicing process of the orange fruit. The reversed-dispersive solid phase extraction (r-DSPE) with multi-walled carbon nanotubes (MWCNTs) was employed for the extraction and purification. The established method was validated and satisfactory parameters (linearity, trueness, precision, sensitivity, matrix effect and stability) were obtained. And then, the field trial of spiropidion on sweet oranges has been conducted and the effect of commercial juicing processing on the residue of spiropidion and its metabolites was further investigated. The various processing factors (PFs) for washing, juicing, sterilization, concentrating and essential oil collecting were also determined. The final results indicated that washing processing reduced residues by 18.4%; the juicing step allowed a significant decrease of the spiropidion residue by 34.2-70.8%, with PFs value in the range of 0.290-0.658. However, high level of residual spiropidion (ranging from 4.016 to 4.205 mg/kg) was detected in orange essential oil, with PFs value of 17.157. All the above results demonstrated the efficiency of the established method in the routine control analysis of spiropidion residues in sweet orange fruits and their by-products, and will facilitate the further intensive research on its spatial distribution, transfer and degradation during the different processing procedures of the sweet orange fruits.


Subject(s)
Nanotubes, Carbon , Oils, Volatile , Chromatography, High Pressure Liquid/methods , Fruit/chemistry , Tandem Mass Spectrometry/methods , Nanotubes, Carbon/analysis , Nanotubes, Carbon/chemistry , Oils, Volatile/analysis
6.
Article in English | MEDLINE | ID: mdl-37971917

ABSTRACT

Semisupervised human activity recognition (SemiHAR) has attracted attention in recent years from various domains, such as digital health and ambient intelligence. Currently, it still faces two challenges. For one thing, discriminative features may exist among multiple sequences rather than a single sequence since activities are combinations of motions involving several body parts. For another thing, labeled data and unlabeled data suffer from distribution discrepancies due to the different behavior patterns or biological conditions of users. For that, we propose a novel SemiHAR method based on multitask learning. First, a dimension-based Markov transition field (DMTF) technique is designed to generate 2-D activity data for capturing the interactions among different dimensions. Second, we jointly consider the user recognition (UR) task and the activity recognition (AR) task to reduce the underlying discrepancy. In addition, a task relation learner (TRL) is introduced to dynamically learn task relations, which enables the primary AR task to exploit preferred knowledge from other secondary tasks. We theoretically analyze the proposed SemiHAR and provide a novel generalization result. Extensive experiments conducted on four real-world datasets demonstrate that SemiHAR outperforms other state-of-the-art methods.

7.
Foods ; 12(18)2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37761133

ABSTRACT

Pesticide residues in kumquat fruits from China, and the quality and chronic/acute intake risks in Chinese consumers, were assessed using the QuEChERS procedure and UHPLC-MS/MS and GC-MS/MS methods. Our 5-year monitoring and survey showed 90% of the 573 samples of kumquat fruits collected from two main production areas contained one or multiple residual pesticides. Overall, 30 pesticides were detected, including 16 insecticides, 7 fungicides, 5 acaricides, and 2 plant growth modulators, of which 2 pesticides were already banned. Two or more residual pesticides were discovered in 81% of the samples, and pesticide residues in 9.4% of the samples surpassed the MRLs, such as profenofos, bifenthrin, triazophos, avermectin, spirodiclofen, difenoconazole, and methidathion. The major risk factors on the safety of kumquat fruits before 2019 were profenofos, bifenthrin, and triazophos, but their over-standard frequencies significantly declined after 2019, which was credited to the stricter supervision and management policies by local governments. Despite the high detection rates and multi-residue occurrence of pesticides in kumquat fruits, about 81% of the samples were assessed as qualified. Moreover, the accumulative chronic diet risk determined from ADI is very low. To better protect the health of customers, we shall formulate stricter organic phosphorus pesticide control measures and stricter use guidelines, especially for methidathion, triazophos, chlorpyrifos, and profenofos. This study provides potential data for the design of kumquat fruit quality and safety control guidelines and for the reduction in health risks to humans.

8.
Food Chem ; 419: 136049, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37003051

ABSTRACT

Currently, the development of efficient mycotoxins detection methods, particularly using portable devices as readout devices, remains a great challenge. Herein, a photothermal enzyme-linked immunosorbent assay (ELISA) based on gold nanostars (AuNSs) for the detection of ochratoxin A (OTA) using a "thermometer" was proposed for the first time. AuNSs with photothermal conversion capacity were parepared using an ascorbic acid (AA)-mediated in situ growth methd. Quantification was based on the alkaline phosphatase catalyzing the dephosphorylation of ascorbic acid 2-phosphoate to AA, thereby converting OTA concentration to the amount of in situ synthesized AuNSs, thus achieving straightforward readout by temperature. Benefiting from the classical tyramine signal amplification strategy, a detection limit of 0.39 ng mL-1 was obtained. The recoveries of grape juice and maize samples spiked with 10 ng mL-1 and 30 ng mL-1 OTA ranged from 86.53% to 116.9%. Our method has great potential in on-site OTA detection for food safety.


Subject(s)
Mycotoxins , Ochratoxins , Gold , Ochratoxins/analysis , Immunoassay/methods , Mycotoxins/analysis , Limit of Detection
9.
Food Chem ; 417: 135936, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-36934705

ABSTRACT

Spirodiclofen, a spirocyclic tetronic acid derivative, has excellent acaricidal effect and is used worldwide to control the majority of important mite species. For monitoring its residue in food and environmental samples, two haptens containing different spacer arms were synthesized, a monoclonal antibody (mAb 5A4) against spirodiclofen was prepared, and a heterologous indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) was established. The 50% inhibition concentration (IC50) of ic-ELISA was 25.46 ng/mL, and the working range was 5.59-133.85 ng/mL. The ic-ELISA showed no cross-reactivity with structural analogs of spirodiclofen and other commonly-used acaricides. The average recoveries from Shiranui citrus samples and Yangtze River water were 85.62%-97.74% and 85.95%-99.30%, respectively. In the analysis of 12 citrus samples, the results of the ic-ELISA were quite similar to those of ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Hence, the new immunosorbent assay provides a substitute method for the qualitative and quantitative of spirodiclofen in food and environmental samples.


Subject(s)
Antibodies, Monoclonal , Tandem Mass Spectrometry , Chromatography, Liquid , Enzyme-Linked Immunosorbent Assay/methods
10.
Food Chem ; 407: 135161, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36502732

ABSTRACT

Portable and sensitive detection of carbendazim (CBD) is highly desirable for food safety and environmental protection. Herein, a portable immunosensor for the sensitive detection of CBD is proposed based on alkaline phosphatase (ALP)-labeled and secondary antibody-modified gold nanoparticles (AuNPs). The quantification is based on ALP catalyzing the dephosphorylation of glucose-1-phosphate disodium salt to generate glucose, thus converting the concentration of CBD into glucose, thereby realizing the portable detection of CBD by personal glucose meter. Benefiting from signal amplification strategy that integrates the large specific surface area of AuNPs, the enzymatic reactions of terminal deoxynucleotidyl transferase and ALP, a low detection limit of 0.37 ng/mL for CBD is achieved. When this portable method is used to analyze citrus fruit, canned citrus, and cabbage, good-consistency results are obtained with the UPLC-MS/MS method. The good performance demonstrates the great potential of this portable method for CBD monitoring in resource-poor settings.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Glucose , Immunoassay/methods , Gold , Biosensing Techniques/methods , Chromatography, Liquid , Tandem Mass Spectrometry , Limit of Detection
11.
Anal Chim Acta ; 1231: 340424, 2022 Oct 23.
Article in English | MEDLINE | ID: mdl-36220297

ABSTRACT

Photothermal reagent-mediated portable detection platforms using thermometers as signal readers have received extensive attention due to their simplicity, low cost, and practicality. However, exploitation photothermal reagent with excellent photothermal conversion effect, convenient to synthesize, preferably without any modification for biosensing application, is still challenging. Herein, a simple and rapid seed-mediated in situ synthesis strategy has been developed for the preparation of gold nanostars (AuNSs) with remarkable photothermal conversion effect. By simply changing the seed size and component concentrations involved in the in situ synthesis process, AuNSs have adjustable geometries, allowing the photothermal conversion to be tuned to a high level optimal for biosensing. Meanwhile, an accurate understanding of the photothermal conversion mechanism is obtained by studying the relationship between the morphology of AuNSs and the photothermal effect. Subsequently, using ascorbic acid (AA) as a model target, the preliminary application of AuNSs in constructing a portable photothermal detection platform has been demonstrated. This in situ preparation strategy of AuNSs not only exhibits remarkable photothermal conversion effect, but also avoids complicated and time-consuming synthesis and modification. Therefore, it has great potential to be extended to portable detection of other targets by simply converting the concentration of the target to that of AA.


Subject(s)
Gold , Metal Nanoparticles , Ascorbic Acid , Indicators and Reagents , Thermometers
12.
Int J Biol Macromol ; 222(Pt B): 2661-2669, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36220409

ABSTRACT

The outbreak of citrus brown spot because of Alternaria is one of the most destructive citrus diseases. Additionally, Alternaria species produce highly toxic mycotoxins. Mass screening is a valid method to control the spread of Alternaria. Morphological analysis and polymerase chain reaction combined with gene-sequencing technique are the most commonly used techniques for detecting Alternaria. However, they are limited by either low convenience and accuracy or low instrument accessibility and high cost. To balance the convenience, accuracy, test availability, and low cost, we develop a CRISPR/Cas12a-based photothermal platform for the portable detection of Alternaria genes using a thermometer. Using this platform, the Alternaria genes from the synthetic sequences and cultured fungus of citrus, tomato, and apple can be detected using a thermometer with a detection limit of 1.5 pM. With the aid of the CRISPR/Cas12a system, citrus-associated Alternaria can be specifically differentiated from other citrus disease-associated microorganisms. When the photothermal platform is applied to analyze the citrus fruit samples collected in the field, good-consistency results are obtained with the gene-sequencing technology. The excellent performance of this portable method shows that it can be applied to screen for Alternaria in resource-poor settings.


Subject(s)
Alternaria , Citrus , Alternaria/genetics , Citrus/microbiology , Thermometers , CRISPR-Cas Systems/genetics , Plant Diseases/microbiology
13.
J Chromatogr A ; 1677: 463325, 2022 Aug 16.
Article in English | MEDLINE | ID: mdl-35853420

ABSTRACT

Fluindapyr and penthiopyrad are two new succinate-dehydrogenase-inhibitor fungicides both employed as racemic mixtures of enantiomers to control various fungal pathogens. In the present work, a robust and highly-sensitive method for simultaneous determination of fluindapyr and penthiopyrad enantiomers in plant-origin foods (cereals, fruits and vegetables) was developed using UPLC-MS/MS combined with a chiral stationary phase. Rapid baseline chiral separation of four stereoisomers of fluindapyr and penthiopyrad was obtained within 4.2 min on chiral MX(2)-RH column under reversed-phase conditions (with the eluent of acetonitrile/0.1% formic acid in water =70/30 (V:V) and column temperature maintained at 30 °C). The plant-origin samples were extracted quickly with acetonitrile and purified with multi-walled carbon nanotubes. Excellent linearity for the target analytes was observed in the concentration ranging from 1 to 250 µg/L with regression coefficient no less than 0.9967. The mean recoveries of fluindapyr and penthiopyrad enantiomers from six matrices were 77.1-107.2%, with all relative standard deviations values lower than 9.1%. The limit of quantification of four stereoisomers of two target chiral fungicides was 5 µg/kg. The analysis of real samples reveal that the developed method is suitable for the simultaneous chiral determination of fluindapyr and penthiopyrad residues in cereals, fruits and vegetables samples at enantiomeric level and can support their further investigation on enantioselective environmental behaviors and residue surveillance.


Subject(s)
Fungicides, Industrial , Nanotubes, Carbon , Acetonitriles/analysis , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid/methods , Fungicides, Industrial/analysis , Stereoisomerism , Succinic Acid , Tandem Mass Spectrometry/methods , Vegetables/chemistry
14.
Food Chem ; 387: 132919, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35421656

ABSTRACT

Herein, we propose a sensitive fluorescent assay for organophosphorus pesticides (OPs) detection based on a novel strategy of activating the CRISPR-Cas12a system. Specifically, acetylcholinesterase (AChE) hydrolyzes acetylthiocholine into thiocholine (TCh). Subsequently, TCh induces the degradation of MnO2 nanosheets and generates sufficient Mn2+ ions to activate the Mn2+-dependent DNAzyme. Then, as the catalytic product of activated DNAzyme, the short DNA strand activates the CRISPR-Cas12a system to cleave the fluorophore-quencher-labeled DNA reporter (FQ) probe effectively; thus, increasing the fluorescence intensity (FI) in the solution. However, in the presence of OPs, the activity of AChE is suppressed, resulting in a decrease in FI. Under optimized conditions, the limits of detection for paraoxon, dichlorvos, and demeton were 270, 406, and 218 pg/mL, respectively. Benefiting from the outstanding MnO2 nanosheets properties and three rounds of enzymatic signal amplification, the proposed fluorescence assay holds great potential for the detection of OPs in agricultural products.


Subject(s)
Biosensing Techniques , DNA, Catalytic , Pesticides , Acetylcholinesterase/genetics , CRISPR-Cas Systems , Manganese Compounds , Organophosphorus Compounds , Oxides
15.
Molecules ; 26(21)2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34770841

ABSTRACT

MicroRNA160 plays a crucial role in plant development by negatively regulating the auxin response factors (ARFs). In this manuscript, we design an automatic molecule machine (AMM) based on the dual catalytic hairpin assembly (D-CHA) strategy for the signal amplification detection of miRNA160. The detection system contains four hairpin-shaped DNA probes (HP1, HP2, HP3, and HP4). For HP1, the loop is designed to be complementary to miRNA160. A fragment of DNA with the same sequences as miRNA160 is separated into two pieces that are connected at the 3' end of HP2 and 5' end of HP3, respectively. In the presence of the target, four HPs are successively dissolved by the first catalytic hairpin assembly (CHA1), forming a four-way DNA junction (F-DJ) that enables the rearrangement of separated DNA fragments at the end of HP2 and HP3 and serving as an integrated target analogue for initiating the second CHA reaction, generating an enhanced fluorescence signal. Assay experiments demonstrate that D-CHA has a better performance compared with traditional CHA, achieving the detection limit as low as 10 pM for miRNA160 as deduced from its corresponding DNA surrogates. Moreover, non-target miRNAs, as well as single-base mutation targets, can be detected. Overall, the D-CHA strategy provides a competitive method for plant miRNAs detection.


Subject(s)
Biosensing Techniques , DNA Probes , DNA, Catalytic , Inverted Repeat Sequences , MicroRNAs/analysis , Transcription Factors , MicroRNAs/genetics , MicroRNAs/metabolism , Reproducibility of Results , Sensitivity and Specificity , Transcription Factors/metabolism
16.
Anal Methods ; 13(37): 4256-4265, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34591948

ABSTRACT

Enzyme-linked immunosorbent assay (ELISA) with high specificity and sensitivity is one of the most popular techniques for detecting carbendazim (CBD), a commonly used benzimidazole fungicide in agriculture. However, the traditional ELISA based on the horseradish peroxidase (HRP)-3,3',5,5'-tetramethylbenzidine (TMB) system for CBD only displays the yellow color of TMB2+ from deep to light, making it difficult for the naked eye to judge whether CBD in fruits and vegetables exceeds the maximum residue limit. In this article, we intend to improve the traditional ELISA method to establish a multicolor signal output ELISA to achieve visual semiquantitative detection of CBD. This method is based on the optical properties of gold nanorods (AuNRs). After introducing AuNRs into TMB2+ solution, which was produced by the HRP-TMB system of traditional ELISA, AuNRs were quickly etched by TMB2+. Consequently, the longitudinal localized surface plasmon resonance peak of AuNRs shows a clear blue shift and a vivid color change. Different concentrations of CBD generate different amounts of TMB2+, which in turn leads to different etching degrees of AuNRs, and ultimately results in a rainbow-like color change. As a result, CBD from 0.08 to 100 ng mL-1 can be easily distinguished by the naked eye, which does not require any large instruments. Moreover, the colors displayed by 0.49 ng mL-1 (purple) and 0 ng mL-1 (pink) are significantly different from each other. It should be noted that 0.49 ng mL-1 is far below the most stringent maximum residue limit of CBD in the world. Additionally, the quantitative determination of CBD spiked in canned citrus, citrus fruits, chives, and cabbage samples showed satisfactory recoveries. The good performance of the AuNR-based ELISA makes it have a wide range of application prospects in food safety and international trade.


Subject(s)
Biosensing Techniques , Benzimidazoles , Carbamates , Commerce , Enzyme-Linked Immunosorbent Assay , Internationality
17.
Ecotoxicol Environ Saf ; 225: 112719, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34478976

ABSTRACT

Dissipation of imidacloprid (IMI) and its metabolites (urea, olefin, 5-hydroxy, guanidine, 6-chloronicotinic acid) in Chinese prickly ash (CPA) was investigated using QuEChERS combined with UPLC-MS/MS. Good linearity (r2 ≥0.9963), accuracy (recoveries of 71.8-104.3%), precision (relative standard deviations of 0.9-9.4%), and sensitivity (limit of quantification ≤0.05 mg kg-1) were obtained. After application of IMI at dosage of 467 mg a.i. L-1 for three times with interval of 7 d, the dissipation dynamics of IMI in CPA followed first-order kinetics, with half-life of 6.48-7.29 d. IMI was the main compound in CPA, followed by urea and guanidine with small amounts of olefin, 5-hydroxy, and 6-chloronicotinic acid. The terminal residues of total IMI and its metabolites at PHI of 14-21 d were 0.16-7.80 mg kg-1 in fresh CPA and 0.41-10.44 mg kg-1 in dried CPA, with the median processing factor of 3.62. Risk assessment showed the acute (RQa) and chronic dietary risk quotients (RQc) of IMI in CPA were 0.020-0.083% and 0.052-0.334%, respectively. Based on the dietary structures of different genders and ages of Chinese people, the whole dietary risk assessment indicated that RQc was less than 100% for the general population except for 2- to 7-year-old children (RQc of 109.9%), implying the long-term risks of IMI were acceptable to common consumers except for children.


Subject(s)
Insecticides , Pesticide Residues , Zanthoxylum , Child , Child, Preschool , China , Chromatography, Liquid , Humans , Insecticides/analysis , Neonicotinoids/analysis , Nitro Compounds/analysis , Pesticide Residues/analysis , Risk Assessment , Tandem Mass Spectrometry
18.
J Sep Sci ; 44(20): 3870-3882, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34418890

ABSTRACT

An ecofriendly and efficient ultrasound-assisted deep eutectic solvents dispersive liquid-phase microextraction by solidifying the deep eutectic solvents-rich phase was developed to determine azoxystrobin, fludioxonil, epoxiconazole, cyprodinil, and prochloraz in fruit juices and tea drinks by high-performance liquid chromatography. A varieties of environmental hydrophobic deep eutectic solvents serving as extraction agents were prepared using L-menthol and decanoic acid as hydrogen-bond acceptor and hydrogen-bond donor, respectively. The deep eutectic solvents were ultrasonically dispersed in sample solutions, solidified in a freezer and easily harvested. The main variables were optimized by one-factor-at-a-time and response surface test. The new method performs well with relative recovery of 71.75-109.40%, linear range of 2.5-5000 µg/L (r ≥ 0.9968), detection limit of 0.75-8.45 µg/L, quantification limit of 2.5-25 µg/L,, and inter- and intraday relative standard deviations below 13.53 and 14.84%, respectively. As for the extraction mechanism, deep eutectic solvents were disposed into many fine particles in the solution and captured the analytes based on the changes of particle size and quantity in deep eutectic solvents droplets after extraction. The environmental method can successfully detect fungicide residues in real fruit juices and tea drinks.


Subject(s)
Decanoic Acids/chemistry , Fruit and Vegetable Juices/analysis , Fungicides, Industrial/analysis , Liquid Phase Microextraction , Menthol/chemistry , Tea/chemistry , Ultrasonic Waves , Hydrophobic and Hydrophilic Interactions , Solvents/chemistry
19.
Food Chem ; 362: 130223, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34091161

ABSTRACT

Naringenin, a flavonoid compound found in pummelo, is a key biological active compound in some traditional Chinese medicines, including Citri reticulatae pericarpium, Citri reticulatae pericarpium viride, Aurantii fructus immaturus, and Aurantii fructus. These Chinese medicinal preparations are the peels or immature fruits of certain citrus species. Aiming at detecting naringenin in complex matrices such as pummelo and traditional Chinese medicines, we put forward a sensitive and practical indirect competitive enzyme-linked immunosorbent assay (icELISA) based on anti-naringenin monoclonal antibodies (anti-Nar-mAbs). The median inhibitory concentration (IC50) was 4.43 ng/mL, and the working range was 1.15-15.81 ng/mL. The findings of the icELISA for the analysis of naringenin in pummelo and herb samples had a good correlation with the ultra performance liquid chromatography (UPLC) methodology and showed good accuracy and reproducibility. These data demonstrated that the developed icELISA is reliable, accurate, and suitable for detecting naringenin in pummelo and traditional Chinese medicines.


Subject(s)
Citrus/chemistry , Drugs, Chinese Herbal/analysis , Enzyme-Linked Immunosorbent Assay/methods , Flavanones/analysis , Animals , Antibodies, Monoclonal , Female , Flavanones/immunology , Flavonoids/analysis , Fruit/chemistry , Mice, Inbred BALB C , Reproducibility of Results , Sensitivity and Specificity
20.
Food Chem ; 351: 129292, 2021 Jul 30.
Article in English | MEDLINE | ID: mdl-33626465

ABSTRACT

The detection of carbendazim (CBZ) is important for food safety and human health. However, most current analytical methods require large instruments and highly trained operators. In order to solve this problem, herein, an innovative portable and quantitative photothermal assay platform relying on a thermometer readout for the detection of CBZ has been developed. Gold nanoparticles (AuNPs), which exhibit a strong distance-dependent photothermal effect under specific laser irradiation, were utilized as indicators. The CBZ aptamer was introduced to protect AuNPs from salt-mediated aggregation. When CBZ is present, the binding event between CBZ and aptamer leads to the loss of the aptamer protective effect on AuNPs, and AuNP aggregation occurs. Under 650-nm laser irradiation, the increase in temperature associated with an AuNP-dependent photothermal effect is highly related to the CBZ concentration. Having the advantages of user-friendliness, low cost, quick response, and portability, this method has great potential for on-site applications.


Subject(s)
Benzimidazoles/analysis , Carbamates/analysis , Food Analysis/methods , Fungicides, Industrial/analysis , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/metabolism , Brassica/chemistry , Brassica/metabolism , Citrus/chemistry , Citrus/metabolism , Food Analysis/instrumentation , Fruit/chemistry , Fruit/metabolism , Gold/chemistry , Metal Nanoparticles/chemistry , Spectrophotometry, Ultraviolet , Temperature , Thermometers
SELECTION OF CITATIONS
SEARCH DETAIL
...