Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.388
Filter
2.
PeerJ ; 12: e17427, 2024.
Article in English | MEDLINE | ID: mdl-38827289

ABSTRACT

Background: Survivors of sepsis may encounter cognitive impairment following their recovery from critical condition. At present, there is no standardized treatment for addressing sepsis-associated encephalopathy. Lactobacillus rhamnosus GG (LGG) is a prevalent bacterium found in the gut microbiota and is an active component of probiotic supplements. LGG has demonstrated to be associated with cognitive improvement. This study explored whether LGG administration prior to and following induced sepsis could ameliorate cognitive deficits, and explored potential mechanisms. Methods: Female C57BL/6 mice were randomly divided into three groups: sham surgery, cecal ligation and puncture (CLP), and CLP+LGG. Cognitive behavior was assessed longitudinally at 7-9d, 14-16d, and 21-23d after surgery using an open field test and novel object recognition test. The impact of LGG treatment on pathological changes, the expression level of brain-derived neurotrophic factor (BDNF), and the phosphorylation level of the TrkB receptor (p-TrkB) in the hippocampus of mice at two weeks post-CLP (16d) were evaluated using histological, immunofluorescence, immunohistochemistry, and western blot analyses. Results: The CLP surgery induced and sustained cognitive impairment in mice with sepsis for a minimum of three weeks following the surgery. Compared to mice subjected to CLP alone, the administration of LGG improved the survival of mice with sepsis and notably enhanced their cognitive functioning. Moreover, LGG supplementation significantly alleviated the decrease in hippocampal BDNF expression and p-TrkB phosphorylation levels caused by sepsis, preserving neuronal survival and mitigating the pathological changes within the hippocampus of mice with sepsis. LGG supplementation mitigates sepsis-related cognitive impairment in mice and preserves BDNF expression and p-TrkB levels in the hippocampus.


Subject(s)
Brain-Derived Neurotrophic Factor , Cognitive Dysfunction , Hippocampus , Lacticaseibacillus rhamnosus , Mice, Inbred C57BL , Probiotics , Sepsis , Animals , Sepsis/complications , Sepsis/therapy , Sepsis/microbiology , Sepsis/metabolism , Cognitive Dysfunction/therapy , Cognitive Dysfunction/etiology , Brain-Derived Neurotrophic Factor/metabolism , Female , Mice , Hippocampus/metabolism , Probiotics/pharmacology , Probiotics/administration & dosage , Probiotics/therapeutic use , Disease Models, Animal , Receptor, trkB/metabolism , Sepsis-Associated Encephalopathy/metabolism , Sepsis-Associated Encephalopathy/pathology , Sepsis-Associated Encephalopathy/diet therapy , Phosphorylation
3.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 21-27, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836686

ABSTRACT

This research aimed to investigate the effect of slow-released angiogenin by silicon micro-needle on angiogenesis in the Choke zone of dorsal multiple-territory perforator flap in rats, as well as its mechanism. Thirty-six adult Sprague-Dawley (SD) rats were randomly divided into control group, model group, and four experimental groups. In model group, slow-release saline through a silicon micro-needle was placed in choke II zone of the flap 7 days before the operation. For rats in four experimental groups, angiogenin was released via micro-needle in the choke I and choke II zones of the cross-zone flap 7 days before and 3 days before flap surgery, respectively. A 12 cm × 3 cm cross-zone perforator flap model was made on the back of all five groups. The flap survival rate in slow-release angiopoietin group was statistically higher than that in model group (P<0.05). Angiogenin in choke zone of the flap was increased in slow-release angiogenin group (P<0.05). In slow-release angiogenin group, the micro-vessel density was increased and the arteriovenous diameter was decreased, while the arteriovenous diameter was increased in model group (P<0.05). The levels of vascular endothelial growth factor A (VEGF-A) and angiotensin 1 (ANG-1) in choke zone were both elevated in slow-release angiogenin group (P<0.05). The expression of CD31 was significantly elevated in flaps of experimental groups (P<0.05). Micro-needle to slow release Angiogenin can increase the drug concentration in the tissues of the choke zone, promote the vascularization of rat dorsal crossover area perforator flap, reduce the possibility of flap ischemic necrosis, and improve the flap survival rate.


Subject(s)
Perforator Flap , Rats, Sprague-Dawley , Ribonuclease, Pancreatic , Animals , Ribonuclease, Pancreatic/metabolism , Perforator Flap/blood supply , Male , Silicon/chemistry , Neovascularization, Physiologic/drug effects , Needles , Rats , Vascular Endothelial Growth Factor A/metabolism , Delayed-Action Preparations
4.
mSphere ; : e0031724, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837389

ABSTRACT

The emerging prevalence of drug-resistant Staphylococcus aureus isolates underscores the urgent need for alternative therapeutic strategies due to the declining effectiveness of traditional antibiotics in clinical settings. MgrA, a key virulence regulator in S. aureus, orchestrates the expression of numerous virulence factors. Here, we report the discovery of isorhapontigenin, a methoxylated analog of resveratrol, as a potential anti-virulence agent against S. aureus. Isorhapontigenin effectively inhibits the hemolytic activity of S. aureus in a non-bactericidal manner. Additionally, it significantly reduces the cytotoxicity of S. aureus and impairs its ability to survive in macrophages. Mechanistically, isorhapontigenin modulates the expression of virulence factors, dose-dependently downregulating hla and upregulating the MgrA-regulated gene spa. Electrophoretic mobility shift assays demonstrated that isorhapontigenin inhibits the binding of MgrA to the hla promoter in a dose-dependent manner. Thermal shift assays confirmed the direct interaction between isorhapontigenin and the MgrA protein. The in vivo experiments demonstrated that isorhapontigenin significantly reduced the area of skin abscesses and improved survival in a pneumonia model while decreasing bacterial burden and inflammation in the lungs. In conclusion, isorhapontigenin holds potential as a candidate drug for further development as an anti-virulence agent for treating S. aureus infections. IMPORTANCE: The emergence of antibiotic-resistant Staphylococcus aureus strains presents a formidable challenge to public health, necessitating novel approaches in combating these pathogens. Traditional antibiotics are becoming increasingly ineffective, leading to a pressing need for innovative therapeutic strategies. In this study, targeting virulence factors that play a crucial role in the pathogenesis of bacterial infections offers a promising alternative to circumvent resistance mechanisms. The discovery of isorhapontigenin as an inhibitor of S. aureus virulence represents a significant advance in anti-virulence therapy.

5.
Article in English | MEDLINE | ID: mdl-38837928

ABSTRACT

Inspired by the masked language modeling (MLM) in natural language processing tasks, the masked image modeling (MIM) has been recognized as a strong self-supervised pre-training method in computer vision. However, the high random mask ratio of MIM results in two serious problems: 1) the inadequate data utilization of images within each iteration brings prolonged pre-training, and 2) the high inconsistency of predictions results in unreliable generations, i.e., the prediction of the identical patch may be inconsistent in different mask rounds, leading to divergent semantics in the ultimately generated outcomes. To tackle these problems, we propose the efficient masked autoencoders with self-consistency (EMAE) to improve the pre-training efficiency and increase the consistency of MIM. In particular, we present a parallel mask strategy that divides the image into K non-overlapping parts, each of which is generated by a random mask with the same mask ratio. Then the MIM task is conducted parallelly on all parts in an iteration and the model minimizes the loss between the predictions and the masked patches. Besides, we design the self-consistency learning to further maintain the consistency of predictions of overlapping masked patches among parts. Overall, our method is able to exploit the data more efficiently and obtains reliable representations. Experiments on ImageNet show that EMAE achieves the best performance on ViT-Large with only 13% of MAE pre-training time using NVIDIA A100 GPUs. After pre-training on diverse datasets, EMAE consistently obtains state-of-the-art transfer ability on a variety of downstream tasks, such as image classification, object detection, and semantic segmentation.

6.
ACS Biomater Sci Eng ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38832439

ABSTRACT

Cryopreservation of red blood cells (RBCs) plays an indispensable role in modern clinical transfusion therapy. Researchers are dedicated to finding cryoprotectants (CPAs) with high efficiency and low toxicity to prevent RBCs from cryopreservation injury. This study presents, for the first time, the feasibility and underlying mechanisms of a novel CPA called tris(hydroxymethyl)aminomethane-3-propanesulfonic acid (TAPS) in RBCs cryopreservation. The results demonstrated that the addition of TAPS achieved a post-thaw recovery of RBCs at 79.12 ± 0.67%, accompanied by excellent biocompatibility (above 97%). Subsequently, the mechanism for preventing RBCs from cryopreservation injury was elucidated. On one hand, TAPS exhibits a significant amount of bound water and effectively inhibits ice recrystallization, thereby reducing mechanical damage. On the other hand, TAPS demonstrates high capacity to scavenge reactive oxygen species and strong endogenous antioxidant enzyme activity, providing effective protection against oxidative damage. Above all, TAPS can be readily removed through direct washing, and the RBCs after washing showed no significant differences in various physiological parameters (SEM, RBC hemolysis, ESR, ATPase activity, and Hb content) compared to fresh RBCs. Finally, the presented mathematical modeling analysis indicates the good benefits of TAPS. In summary, TAPS holds potential for both research and practical in the field of cryobiology, offering innovative insights for the improvement of RBCs cryopreservation in transfusion medicine.

7.
Arch Microbiol ; 206(7): 289, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847838

ABSTRACT

Staphylococcus epidermidis is an opportunistic pathogen commonly implicated in medical device-related infections. Its propensity to form biofilms not only leads to chronic infections but also exacerbates the issue of antibiotic resistance, necessitating high-dose antimicrobial treatments. In this study, we explored the use of diclofenac sodium, a non-steroidal anti-inflammatory drug, as an anti-biofilm agent against S. epidermidis. In this study, crystal violet staining and confocal laser scanning microscope analysis showed that diclofenac sodium, at subinhibitory concentration (0.4 mM), significantly inhibited biofilm formation in both methicillin-susceptible and methicillin-resistant S. epidermidis isolates. MTT assays demonstrated that 0.4 mM diclofenac sodium reduced the metabolic activity of biofilms by 25.21-49.01% compared to untreated controls. Additionally, the treatment of diclofenac sodium resulted in a significant decrease (56.01-65.67%) in initial bacterial adhesion, a crucial early phase of biofilm development. Notably, diclofenac sodium decreased the production of polysaccharide intercellular adhesin (PIA), a key component of the S. epidermidis biofilm matrix, in a dose-dependent manner. Real-time quantitative PCR analysis revealed that diclofenac sodium treatment downregulated biofilm-associated genes icaA, fnbA, and sigB and upregulated negative regulatory genes icaR and luxS, providing potential mechanistic insights. These findings indicate that diclofenac sodium inhibits S. epidermidis biofilm formation by affecting initial bacterial adhesion and the PIA synthesis. This underscores the potential of diclofenac sodium as a supplementary antimicrobial agent in combating staphylococcal biofilm-associated infections.


Subject(s)
Anti-Bacterial Agents , Biofilms , Diclofenac , Staphylococcus epidermidis , Biofilms/drug effects , Staphylococcus epidermidis/drug effects , Staphylococcus epidermidis/physiology , Diclofenac/pharmacology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Bacterial Adhesion/drug effects , Humans , Polysaccharides, Bacterial/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Staphylococcal Infections/microbiology , Staphylococcal Infections/drug therapy , Gene Expression Regulation, Bacterial/drug effects
8.
Sci Adv ; 10(23): eadn2877, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38838156

ABSTRACT

Alloying has proven power to upgrade metallic electrocatalysts, while the traditional alloys encounter limitation for optimizing electronic structures of surface metallic sites in a continuous manner. High-entropy alloys (HEAs) overcome this limitation by manageably tuning the adsorption/desorption energies of reaction intermediates. Recently, the marriage of nanotechnology and HEAs has made considerable progresses for renewable energy technologies, showing two important trends of size diminishment and multidimensionality. This review is dedicated to summarizing recent advances of HEAs that are rationally designed for energy electrocatalysis. We first explain the advantages of HEAs as electrocatalysts from three aspects: high entropy, nanometer, and multidimension. Then, several structural regulation methods are proposed to promote the electrocatalysis of HEAs, involving the thermodynamically nonequilibrium synthesis, regulating the (sub-)nanosize and anisotropic morphologies, as well as engineering the atomic ordering. The general relationship between the electronic structures and electrocatalytic properties of HEAs is further discussed. Finally, we outline remaining challenges of this field, aiming to inspire more sophisticated HEA-based nanocatalysts.

9.
Se Pu ; 42(6): 555-563, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38845516

ABSTRACT

Mitochondria perform various metabolic processes that significantly affect cell differentiation, proliferation, signal transduction, and programmed cell death. The disruption of mitochondrial bioenergetic and metabolic functions is closely related to many disorders. The specific isolation and purification of intact, high-purity, and functional mitochondria are central to the understanding of their mechanism of action but remain challenging tasks. In this study, a mitochondrial penetrating peptide (MPP) with the sequence FrFKFrFK(Ac) was used as a mitochondrial recognition motif to construct a peptide-guided affinity separation material. The multiple aromatic phenylalanine (F) residues in this amphiphilic peptide can confer lipophilicity to the mitochondrial membrane, whereas the basic residues (D-arginine and lysine) render the MPP surface positively charged, thereby promoting the binding of negatively charged mitochondria. After the derivatization of the N terminal of MPP with an oligoglycine spacer, the peptide ligands were conjugated to matrix beads (MB) with surface aldehyde functional groups. Peptide functionalization was performed via a condensation reaction between the amino group in the peptide ligand and the aldehyde group on the beads. The generated Schiff bases were reduced, affording stable covalent bonds. The dense and stable functionalization of the beads with the mitochondria-targeting peptides was demonstrated using high performance liquid chromatography (HPLC), zeta potential assay, and scanning electron microscopy (SEM). The immobilization efficiency of the peptide ligands was 1.47 µmol/g, and the surface potential of MB@MPP was 11 mV. MB@MPP was used for the direct isolation of mitochondria after cell homogenization. As observed by SEM, mitochondria with a cross-sectional diameter of 500 nm were efficiently captured on the MB@MPP surface. Because the mitochondrial membrane potential is an important marker of mitochondrial function and the driving force behind the staining of mitochondria with Mito Tracker dyes, the specific binding and separation of fluorescent mitochondria from the cell samples revealed that the proposed MB@MPP-based isolation approach can keep mitochondria intact and retain their functions. Western blot assays were employed to characterize the protein markers of the mitochondria (citrate synthase (CS) and voltage-dependent anion channel protein (VDAC)) and cytoplasmic protein (vinculin), and examine the integrity and purity of the captured mitochondria. The results showed that the lysates released from MB@MPP had high CS and VDAC contents. By contrast, vinculin, which is highly abundant in whole-cell lysates, was barely detected in the lysates from MB@MPP. These results suggest that MB@MPP isolates mitochondria with high affinity, specificity, and antifouling ability by using the targeting peptide as the capture handle. A comparison with a commercial mitochondrial isolation kit demonstrated that MB@MPP can separate mitochondria with higher CS and VDAC abundance and purity. Given the superior separation performance of MB@MPP, the molecular profiles of the isolated mitochondria under stress were subjected to further analysis of their molecular profiles under stress. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was established to detect tryptophan (Trp) and riboflavin in the mitochondria. Quantification was performed in multiple-reaction monitoring (MRM) mode. Owing to the high purity of the mitochondria, the Trp and riboflavin contents were determined to be 265 and 0.67 nmol/mg, respectively. The metabolic response of mitochondria to external stimuli was further examined using acadesine, an adenosine 5'-monophosphate (AMP)-activated protein kinase activator with a wide range of metabolic effects, to treat cells. After cell homogenization, MB@MPP was used to separate the mitochondria from the cell samples with and without acadesine treatment, followed by LC-MS/MS analysis. The quantification results demonstrated that acadesine induced a 14% upregulation of Trp content in the mitochondria. By contrast, the riboflavin content decreased to 0.48 nmol/mg, which is 72% of that in untreated mitochondria. The changes in Trp and riboflavin contents could influence their metabolic pathways and, thus, the levels of their metabolites, such as nicotinamide adenine dinucleotide, flavin mononucleotide, and flavin adenine dinucleotide, which are essential coenzymes in mitochondria. Peptide-functionalized affinity microbeads with high affinity and specificity for mitochondria are promising for the efficient isolation of high-quality mitochondria, and offer a useful tool for understanding the complicated functions and dynamics of this unique organelle.


Subject(s)
Mitochondria , Peptides , Mitochondria/metabolism , Peptides/chemistry , Peptides/isolation & purification , Animals , Chromatography, Affinity
11.
Virus Res ; : 199412, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38838820

ABSTRACT

African swine fever virus (ASFV) is a large double-stranded DNA virus with a complex structural architecture and encodes more than 150 proteins, where many are with unknown functions. E184L has been reported as one of the immunogenic ASFV proteins that may contribute to ASFV pathogenesis and immune evasion. However, the antigenic epitopes of E184L are not yet characterized. In this study, recombinant E184L protein was expressed in prokaryotic expression system and four monoclonal antibodies (mAbs), designated as 1A10, 2D2, 3H6, and 4C10 were generated. All four mAbs reacted specifically with ASFV infected cells. To identify the epitopes of the mAbs, a series of overlapped peptides of E184L were designed and expressed as maltose binding fusion proteins. Accordingly, the expressed fusion proteins were probed with each E184L mAb separately by using Western blot. Following a fine mapping, the minimal linear epitope recognized by mAb 1A10 was identified as 119IQRQGFL125, and mAbs 2D2, 3H6, and 4C10 recognized a region located between 153DPTEFF158. Alignment of amino acids of E184L revealed that the two linear epitopes are highly conserved among different ASFV isolates. Furthermore, the potential application of the two epitopes in ASFV diagnosis was assessed through epitope-based ELISA using 24 ASFV positive and 18 negative pig serum and the method were able to distinguish positive and negative samples, indicating the two epitopes are dominant antigenic sites. To our knowledge, this is the first study to characterize the B cell epitopes of the antigenic E184L protein of ASFV, offering valuable tools for future research, as well as laying a foundation for serological diagnosis and epitope-based marker vaccine development.

12.
J Invest Dermatol ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38848986

ABSTRACT

A better understanding of human melanocyte (MC) and melanocyte stem cell (McSC) biology is essential for treating melanocyte-related diseases. This study employed an inherited pigmentation disorder carrying the SASH1S519N variant in a Hispanic family to investigate the SASH1 function in the MC lineage and the underlying mechanism for this disorder. We used a multidisciplinary approach, including clinical exams, human cell assays, yeast two-hybrid screening, and biochemical techniques. Results linked early hair graying to the SASH1S519N variant, a previously unrecognized clinical phenotype in hyperpigmentation disorders. In vitro, we identified SASH1 as a regulator in McSC maintenance and discovered that TNKS2 is crucial for SASH1's role. Additionally, the S519N variant is located in one of multiple tankyrase-binding motifs and alters the binding kinetics and affinity of the interaction. In summary, this disorder links both gain and loss of pigmentation in the same individual, hinting to accelerated aging in human McSC. The findings offer insights into the roles of SASH1 and TNKS2 in McSC maintenance and the molecular mechanisms of pigmentation disorders. We propose that a comprehensive clinical evaluation of patients with MC-related disorders should include an assessment and history of hair pigmentation loss.

15.
Cureus ; 16(4): e59172, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38707046

ABSTRACT

Trastuzumab is the first-line therapy for human epidermal growth factor receptor 2 (HER2)-positive breast cancer. However, trastuzumab is associated with cardiotoxicity. It manifests with an asymptomatic reduction of left ventricular ejection fraction (LVEF) and is reversible after discontinuation. Trastuzumab-induced new-onset acute decompensated heart failure is rare (0.5%). We report a case of a 54-year-old woman who received anthracycline (idarubicin, accumulated dose 400 mg/m2 doxorubicin equivalent) for her acute promyelocytic leukocyte 10 years ago, had no relevant comorbidities or other pre-existing cardiovascular diseases, had maintained normal cardiac function, presenting with new-onset dyspnea at rest and bilateral lower extremities swelling 12 weeks after receiving trastuzumab induction chemotherapy for her newly diagnosed early stage HER2-positive breast cancer. Chest X-ray showed severe pulmonary edema. Echocardiography revealed diffuse left ventricular hypokinesis with LVEF 5%. After other possible etiology of cardiomyopathy, including ischemia, infection, substance, or radiation, were excluded by extensive cardiomyopathy workup, a diagnosis of trastuzumab-induced cardiotoxicity was established. Trastuzumab was discontinued, and the patient's symptom was improved with furosemide. Guildline-directed medical therapy was gradually maximized over three months. Repeat transthoracic echocardiography (TTE) at one-year follow-up after the initial diagnosis shows LVEF 33%, and the patient was referred to an advanced heart failure clinic. This case report demonstrated a rare catastrophic cardiac toxicity effect of trastuzumab and its potential association with remote exposure to anthracycline. Studies have investigated the cardiotoxicity in the concurrent use of trastuzumab and anthracycline therapy. However, how trastuzumab affected patients who were exposed to anthracycline for more than eight years had remained unreported. To our knowledge, no previous detailed case report has described the same clinical scenario as in this case. The case also demonstrates the limitation of the commonly used cardio-oncology cardiovascular risk assessment tool and highlights the importance of individualized cardiovascular risk stratification when deciding on chemotherapy plans.

16.
BMC Geriatr ; 24(1): 407, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714958

ABSTRACT

BACKGROUND: Quality of life of osteoporosis patients had caused widespread concern, due to high incidence and difficulty to cure. Scale specifics for osteoporosis and suitable for Chinese cultural background lacked. This study aimed to develop an osteoporosis scale in Quality of Life Instruments for Chronic Diseases system, namely QLICD-OS (V2.0). METHODS: Procedural decision-making approach of nominal group, focus group and modular approach were adopted. Our scale was developed based on experience of establishing scales at home and abroad. In this study, Quality of life measurements were performed on 127 osteoporosis patients before and after treatment to evaluate the psychometric properties. Validity was evaluated by qualitative analysis, item-domain correlation analysis, multi-scaling analysis and factor analysis; the SF-36 scale was used as criterion to carry out correlation analysis for criterion-related validity. The reliability was evaluated by the internal consistency coefficients Cronbach's α, test-retest reliability Pearson correlation r. Paired t-tests were performed on data of ​​the scale before and after treatment, with Standardized Response Mean (SRM) being calculated to evaluate the responsiveness. RESULTS: The QLICD-OS, composed of a general module (28 items) and an osteoporosis-specific module (14 items), had good content validity. Correlation analysis and factor analysis confirmed the construct, with the item having a strong correlation (most > 0.40) with its own domains/principle components, and a weak correlation (< 0.40) with other domains/principle components. Correlation coefficient between the similar domains of QLICD-OS and SF-36 showed reasonable criterion-related validity, with all coefficients r being greater than 0.40 exception of physical function of SF-36 and physical domain of QLICD-OS (0.24). Internal consistency reliability of QLICD-OS in all domains was greater than 0.7 except the specific module. The test-retest reliability coefficients (Pearson r) in all domains and overall score are higher than 0.80. Score changes after treatment were statistically significant, with SRM ranging from 0.35 to 0.79, indicating that QLICD-OS could be rated as medium responsiveness. CONCLUSION: As the first osteoporosis-specific quality of life scale developed by the modular approach in China, the QLICD-OS showed good reliability, validity and medium responsiveness, and could be used to measure quality of life in osteoporosis patients.


Subject(s)
Osteoporosis , Quality of Life , Humans , Quality of Life/psychology , Female , Male , Osteoporosis/psychology , Osteoporosis/diagnosis , Aged , Chronic Disease , Middle Aged , Surveys and Questionnaires/standards , Reproducibility of Results , Psychometrics/methods , Psychometrics/instrumentation , Psychometrics/standards , Aged, 80 and over
17.
ISME Commun ; 4(1): ycae060, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38770059

ABSTRACT

Anammox bacteria inhabiting oxygen-deficient zones (ODZs) are a major functional group mediating fixed nitrogen loss in the global ocean. However, many basic questions regarding the diversity, broad metabolisms, origin, and adaptive mechanisms of ODZ anammox bacteria remain unaddressed. Here we report two novel metagenome-assembled genomes of anammox bacteria affiliated with the Scalindua genus, which represent most, if not all, of the anammox bacteria in the global ODZs. Metagenomic read-recruiting and comparison with historical data show that they are ubiquitously present in all three major ODZs. Beyond the core anammox metabolism, both organisms contain cyanase, and the more dominant one encodes a urease, indicating most ODZ anammox bacteria can utilize cyanate and urea in addition to ammonium. Molecular clock analysis suggests that the evolutionary radiation of these bacteria into ODZs occurred no earlier than 310 million years ago, ~1 billion years after the emergence of the earliest modern-type ODZs. Different strains of the ODZ Scalindua species are also found in benthic sediments, and the first ODZ Scalindua is likely derived from the benthos. Compared to benthic strains of the same clade, ODZ Scalindua uniquely encodes genes for urea utilization but has lost genes related to growth arrest, flagellum synthesis, and chemotaxis, presumably for adaptation to thrive in the global ODZ waters. Our findings expand the known metabolisms and evolutionary history of the bacteria controlling the global nitrogen budget.

18.
Heliyon ; 10(9): e30323, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38711632

ABSTRACT

Background: Prolonged circulatory arrest time is an independent risk factor for postoperative adverse events of type A aortic dissection (TAAD) surgery. Further reduction of the circulatory arrest time is essential to improve surgical outcomes. This study aimed to evaluate the safety and effectiveness of the novel Sutureless Integrated Stented (SIS) graft prosthesis in an animal experiment. Materials and methods: Straight type of the SIS graft prosthesis was implanted into the descending aorta of 10 adult male sheep, and the use of the device was scored on a scale of 1-10. Aortic digital subtraction angiography (DSA) was performed at 4, 14, and 26 weeks to investigate the prostheses. After 26 weeks, the animals were sacrificed for histological analysis. Results: The immediate success rate of the surgery was 100 %, and the overall mean score of the use of the device was 9.65 ± 0.99. Three animals died from non-device-related causes during follow-up. Aortic DSA showed filling defects in 5 animals. Histological analysis revealed that all prostheses were intact. Except for 2 early deaths, the other 8 prostheses were endothelialized with mild inflammation, foreign body reactions, and intimal fibrosis. The mean cross-sectional area of the sutureless region was reduced by 26.4 % (range, 1.3-39.1 %). Conclusions: The safety and effectiveness of the novel SIS graft prosthesis were acceptable, and the delivery system exhibited a promising performance. Using the SIS graft prosthesis in TAAD surgery was expected to simplify the procedures and shorten the circulatory arrest time. Further large-scale clinical trials are required to verify these findings.

19.
J Vis Exp ; (206)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38738908

ABSTRACT

Cognitive symptoms and sleep disturbance (SD) are common non-mood-related symptoms of major depressive disorder (MDD). In clinical practice, both cognitive symptoms and SD are related to MDD progression. However, there are only a few studies investigating the connection between cognitive symptoms and SD in patients with MDD, and only preliminary evidence suggests a significant association between cognitive symptoms and SD in patients with mood disorders. This study investigates the relationship between cognitive symptoms and sleep quality in patients with major depressive disorder. Patients (n = 20) with MDD were enrolled; their mean Hamilton Depression Scale-17 score was 21.95 (±2.76). Gold standard polysomnography (PSG) was used to assess sleep quality, and the validated THINC-integrated tool (the cognitive screening tool) was used to evaluate cognitive function in MDD patients. Overall, the results showed significant correlations between the cognitive screening tool's total score and sleep latency, wake-after-sleep onset, and sleep efficiency. These findings indicate that cognitive symptoms are associated with poor sleep quality among patients with MDD.


Subject(s)
Cognition , Depressive Disorder, Major , Polysomnography , Sleep Quality , Humans , Depressive Disorder, Major/psychology , Adult , Male , Female , Middle Aged , Cognition/physiology , Polysomnography/methods , Sleep Wake Disorders/etiology , Sleep Wake Disorders/psychology
20.
Heliyon ; 10(9): e30174, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38694096

ABSTRACT

At present, most methods to improve the accuracy of emotion recognition based on electroencephalogram (EEG) are achieved by means of increasing the number of channels and feature types. This is to use the big data to train the classification model but it also increases the code complexity and consumes a large amount of computer time. We propose a method of Ant Colony Optimization with Convolutional Neural Networks and Long Short-Term Memory (ACO-CNN-LSTM) which can attain the dynamic optimal channels for lightweight data. First, transform the time-domain EEG signal to the frequency domain by Fast Fourier Transform (FFT), and the Differential Entropy (DE) of the three frequency bands (α, ß and γ) are extracted as the feature data; Then, based on the DE feature dataset, ACO is employed to plan the path where the electrodes are located in the brain map. The classification accuracy of CNN-LSTM is used as the objective function for path determination, and the electrodes on the optimal path are used as the optimal channels; Next, the initial learning rate and batchsize parameters are exactly matched the data characteristics, which can obtain the best initial learning rate and batchsize; Finally, the SJTU Emotion EEG Dataset (SEED) dataset is used for emotion recognition based on the ACO-CNN-LSTM. From the experimental results, it can be seen that: the average accuracy of three-classification (positive, neutral, negative) can achieve 96.59 %, which is based on the lightweight data by means of ACO-CNN-LSTM proposed in the paper. Meanwhile, the computer time consumed is reduced. The computational efficiency is increased by 15.85 % compared with the traditional CNN-LSTM method. The accuracy can achieve more than 90 % when the data volume is reduced to 50 %. In summary, the proposed method of ACO-CNN-LSTM in the paper can get higher efficiency and accuracy.

SELECTION OF CITATIONS
SEARCH DETAIL
...