Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(4): e0298668, 2024.
Article in English | MEDLINE | ID: mdl-38625919

ABSTRACT

Limax maximus, or great gray slug, is a common agriculture pest. The pest infests crops during their growth phase, creating holes in vegetable leaves, particularly in seedlings and tender leaves. A study was conducted to assess the insecticidal activity of Ageratina adenophora extract against these slugs. Factors such as fecundity, growth, hatching rate, offspring survival rate, protective enzyme activity, and detoxifying enzyme activity were examined in slugs exposed to the extract's sublethal concentration (LC50) for two different durations (24 and 48 h). The phytochemical variability of the extracts was also studied. The LC50 value of the A. adenophora extract against L. maximus was 35.9 mg/mL. This extract significantly reduced the hatching rate of eggs and the survival rate of offspring hatched from exposed eggs compared with the control. The lowest rates were observed in those exposed for 48 h. The survival, growth, protective enzyme, and detoxification activity of newly hatched and 40-day-old slugs decreased. The A. adenophora extract contained tannins, flavonoids, and saponins, possibly contributing to their biological effects. These results suggest that the extract could be used as an alternative treatment for slug extermination, effectively controlling this species.


Subject(s)
Ageratina , Asteraceae , Gastropoda , Insecticides , Animals , Insecticides/pharmacology , Mollusca , Plant Extracts/pharmacology
2.
Insects ; 14(8)2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37623405

ABSTRACT

Aphids are typical phloem-sucking insect pests. A good understanding regarding their feeding behavior and population dynamics are critical for evaluating host adaptation and screening of aphid-resistant resources. Herein, the adaptability of Toxoptera aurantii (Boyer) (Hemiptera: Aphididae) to different hosts was evaluated via electropenetrography and an age-stage, two-sex life table on six tea germplasms: Zikui (ZK), Zhongcha108 (ZC108), Zhongcha111 (ZC111), Qianmei419 (QM419), Meitan5 (MT5), and Fudingdabaicha (FD). Our findings revealed that the feeding activities of T. aurantii differed considerably among the host plants. T. aurantii exhibited significantly more pathway activities on ZK and FD than on the other hosts. However, the duration of feeding of T. aurantii on ZK phloem considerably decreased compared with those of the other germplasms. Life parameters indicated that T. aurantii exhibited the highest intrinsic rate of increase (r), net reproductive rate (R0), and finite rate of increase (λ) on MT5, and the maximum values of total longevity and oviposition period were recorded on FD; these variables were reduced significantly on ZK. The results of our study demonstrate that T. aurantii can successfully survive on the six tea germplasms; however, ZK was less suitable for T. aurantii and should be considered as a potential source of resistance in breeding and Integrated Pest Management.

3.
Insects ; 13(9)2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36135474

ABSTRACT

Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) is a widely used tool for measuring gene expression; however, its accuracy relies on normalizing the data to one or more stable reference genes. Eocanthecona furcellata (Wolff) is a polyphagous predatory natural enemy insect that preferentially feeds on more than 40 types of agricultural and forestry pests, such as those belonging to the orders Lepidoptera, Coleoptera, and Hymenoptera. However, to our knowledge, the selection of stable reference genes has not been reported in detail thus far. In this study, nine E. furcellata candidate reference genes (ß-1-TUB, RPL4, RPL32, RPS17, RPS25, SDHA, GAPDH2, EF2, and UBQ) were selected based on transcriptome sequencing results. The expression of these genes in various samples was examined at different developmental stages, in the tissues of male and female adults, and after temperature and starvation treatments. Five algorithms were used, including ΔCt, geNorm, NormFinder, BestKeeper, and RefFinder, to evaluate reference gene expression stability. The results revealed that the most stable reference genes were RPL32 and RPS25 at different developmental stages; RPS17, RPL4, and EF2 for female adult tissue samples; RPS17 and RPL32 for male adult tissue samples; RPS17 and RPL32 for various temperature treatments of nymphs; RPS17 and RPS25 for nymph samples under starvation stress; and RPS17 and RPL32 for all samples. Overall, we obtained a stable expression of reference genes under different conditions in E. furcellata, which provides a basis for future molecular studies on this organism.

4.
Insects ; 13(8)2022 Aug 22.
Article in English | MEDLINE | ID: mdl-36005378

ABSTRACT

An understanding of physiological damage and population development caused by uncomfortable temperature plays an important role in pest control. In order to clarify the adaptability of different temperatures and physiological response mechanism of B. dorsalis, we focused on the adaptation ability of this pest to environmental stress from physiological and ecological viewpoints. In this study, we explored the relationship between population parameters and glucose, glycogen, trehalose, and trehalose-6-phosphate synthase responses to high and low temperatures. Compared with the control group, temperature stress delayed the development duration of all stages, and the survival rates and longevity decreased gradually as temperature decreased to 0 °C and increased to 36 °C. Furthermore, with low temperature decrease from 10 °C to 0 °C, the average fecundity per female increased at 10 °C but decreased later. Reproduction of the species was negatively affected during high-temperature stresses, reaching the lowest value at 36 °C. In addition to significantly affecting biological characteristics, temperature stress influenced physiological changes of B. dorsalis in cold and heat tolerance. When temperature deviated significantly from the norm, the levels of substances associated with temperature resistance were altered: glucose, trehalose, and TPS levels increased, but glycogen levels decreased. These results suggest that temperature stresses exert a detrimental effect on the populations' survival, but the metabolism of trehalose and glycogen may enhance the pest's temperature resistance.

5.
Front Physiol ; 13: 1118955, 2022.
Article in English | MEDLINE | ID: mdl-36714316

ABSTRACT

The honey locusts (genus Gleditsia) are a genus of high-value trees in Asia. Seed beetle, Megabruchidius dorsalis (Fåhraeus) (Col.: Chrysomelidae: Bruchinae), is a Gleditsia oligophagous pest that causes severe yield reduction. To understand the cold tolerance of M. dorsalis adults, this study investigated its cold tolerance strategy and the influence of low temperatures on its physiology and biochemistry. The low-temperature treatments were divided into three groups: long-term temperature acclimation (Group 1; 15°C, or 20°C, or 25°C, or 28°C [control check, CK] for 10 days), short-term low-temperature exposure (Group 2; 0°C or 4°C for 2 h), and long-term low-temperature induction (Group 3; 0°C or 4°C for 1, 3, or 5 d). The supercooling point (SCP; temperature at which spontaneous nucleation and ice lattice growth begin), freezing point (FP; temperature at which insect fluids freeze), low lethal temperature (LLT; temperature at which all individuals are killed), water, lipid, glycerol, and total sugars contents were measured under different temperature stresses. The results showed that M. dorsalis adults were a freeze-avoidant species. The SCP and LLT at 28°C were -10.62°C and -19.48°C, respectively. The SCP and FP of long-term temperature acclimation (15°C, or 20°C, or 25°C) were significantly lower than that of the control group (28°C). The water content of the long-term low temperature induction (0°C) group was significantly lower than that of the control group. The lipid and glycerol content in the acclimated group at 20°C and 25°C were significantly higher than in the control group. M. dorsalis adults may maintain their biofluids in a supercooled state via cryoprotectant accumulation and cryoprotective dehydration to prevent ice nucleation. This study provides a theoretical basis for future research on overwintering and potential distribution and related prediction of M. dorsalis adults.

6.
Insects ; 12(12)2021 Dec 18.
Article in English | MEDLINE | ID: mdl-34940223

ABSTRACT

Terrestrial slugs are a prominent agricultural pest worldwide. To mitigate the negative effects of chemical pest control, biological control involves the use of natural enemies to reduce the impact of target pests. Numerous insects are natural predators of slugs. This study evaluated potential of the predatory species, Carabus elysii Thomson (Coleoptera: Carabidae) to biologically control the terrestrial slug, Agriolimax agrestis. Laboratory experiments were conducted to investigate the functional response, searching efficiency, and interference effect of female and male C. elysii adults regarding adult, immature, and juvenile A. agrestis individuals. The results show that both female and male ground beetle adults are functionally capable of preying on different sizes of terrestrial slugs. C. elysii exhibited Holling type II functional responses when preying on A. agrestis. The maximum daily prey consumption was 35.5 juveniles, 25.1 immatures, and 17.1 adults for adult females and 26.9 juveniles, 20.3 immatures, and 11.6 adults for adult males. The searching efficiency of female C. elysii adults regarding A. agrestis was always higher than that of male adults for identical ages and densities of A. agrestis. Moreover, the predation of C. elysii on slugs was affected by predator density. The disturbance coefficient of male C. elysii were the highest on adult A. agrestis. The results of this study suggest that female C. elysii exhibit a high potential for the biological control of A. agrestis.

7.
Insects ; 12(10)2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34680633

ABSTRACT

Piercing-sucking insects are important crop pests, and an understanding of their feeding behavior and population development plays a crucial role in studying insect population dynamics and crop resistance. In our study, we examined the probing behavior of the brown citrus aphid, Toxoptera citricida, using electropenetrography and assessed its population development after 8 days on seven host plants: Yuzu, Citrus junos Sieb. ex Tanaka; Rough Lemon, C. jambhiri Lush.; 'Luofu' kumquat, Fortunella margarita Swingle; 'Olinda' valencia orange, C. sinensis (L.) Osbeck; 'Yanxiwanlu' Ponkan, C. reticulata Blanco; 'Rohde Red' valencia orange, C. sinensis; and 'Eureka' lemon, C. limon (L.) Osbeck. The results demonstrated that probing by the brown citrus aphid differed significantly according to the target hosts. Toxoptera citricida produced significantly more pathway activities on Eureka than on Rough Lemon and Yuzu. Toxoptera citricida spent more time from the first probe to first salivation into phloem sieve elements on Eureka compared to Yuzu. In addition, the total duration of ingestion from sieve cells of each aphid in the phloem-feeding phase was shortest on Eureka, and this was significantly shorter than that on Yuzu, Rough Lemon, Luofu, and Olinda. The population number of T. citricida on Eureka after 8 days was significantly lower than that on the other hosts. Overall, Eureka was found to have obvious resistance to T. citricida, whereas Yuzu and Rough Lemon were susceptible host plants. These results provide a theoretical basis for exploring aphid-resistant fruit tree resources using resistant varieties.

SELECTION OF CITATIONS
SEARCH DETAIL
...