Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Exp Pharmacol Physiol ; 44(5): 586-594, 2017 May.
Article in English | MEDLINE | ID: mdl-28079261

ABSTRACT

Ropivacaine is one of the most common but toxic local anaesthetics, and the mechanisms underlying its neurotoxicity are still largely unknown. This study was conducted to prepare a ropivacaine-induced neuronal injury model and research the effects of ropivacaine on PARP-1 activation and nicotinamide adenine dinucleotide (NAD)+ depletion. The cell death and apoptosis of ropivacaine-induced SH-SY5Y cells were detected with flow cytometry. The lactate dehydrogenase cycling reaction measured the NAD+ level, and western blots were used to analyze the expression levels of PARP-1 and apoptosis-inducing factor (AIF) after ropivacaine treatments with different concentrations and durations. A PARP-1 inhibitor (PJ-34) was used to confirm the relationship between PARP-1 activation and NAD+ depletion. Hoechst 33258 nuclear staining and a mitochondrial membrane potential (Δψm) assay were used to detect the role of exogenous NAD+ in ropivacaine-induced neuronal injury. Ropivacaine-induced SH-SY5Y cell death and apoptosis, PARP-1 activation, and AIF increase as well as intracellular NAD+ depletion occurred in a time- and concentration-dependent manner (P<.05). PARP-1 activation led to NAD+ depletion (P<.05). Exogenous NAD+ impaired ropivacaine-induced nuclear injury (P<.05). Ropivacaine treatment induced PARP-1 activation and NAD+ depletion (P<.05). Parthanatos (PARP-1-dependent cell death) was definitely involved in ropivacaine-induced neuronal injury, and exogenous NAD+ may be a novel therapeutic method for parthanatos-dependent neuronal injury.


Subject(s)
Amides/administration & dosage , Anesthetics, Local/administration & dosage , Apoptosis/drug effects , NAD/administration & dosage , NAD/metabolism , Poly (ADP-Ribose) Polymerase-1/metabolism , Apoptosis/physiology , Cell Death/drug effects , Cell Death/physiology , Cell Line, Tumor , Dose-Response Relationship, Drug , Drug Interactions/physiology , Humans , Phenanthrenes/administration & dosage , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Ropivacaine
SELECTION OF CITATIONS
SEARCH DETAIL
...