Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Breast Cancer Res Treat ; 202(3): 595-606, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37695401

ABSTRACT

PURPOSE: The overexpression of mitotic kinase monopolar spindle 1 (Mps1) has been identified in many tumor types, and targeting Mps1 for tumor therapy has shown great promise in multiple preclinical cancer models. However, the role played by Mps1 in tamoxifen (TAM) resistance in breast cancer has never been reported. METHODS: The sensitivity of breast cancer cells to tamoxifen was analysed in colony formation assays and wound healing assays. Enhanced transactivational activity of estrogen receptor α (ERα) led by Mps1 overexpression was determined by luciferase assays. The interaction between Mps1 and ERα was verified by co-immunoprecipitation and proximity ligation assay. Phosphorylation of ERα by Mps1 was detected by in vitro kinase assay and such phosphorylation process in vivo was proven by co-immunoprecipitation. The potential phosphorylation site(s) of ERα were analyzed by mass spectrometry. RESULTS: Mps1 determines the sensitivity of breast cancer cells to tamoxifen treatment. Mps1 overexpression rendered breast cancer cells more resistant to tamoxifen, while an Mps1 inhibitor or siMps1 oligos enabled cancer cells to overcome tamoxifen resistance. Mechanistically, Mps1 interacted with estrogen receptor α and stimulated its transactivational activity in a kinase activity-dependent manner. Mps1 was critical for ERα phosphorylation at Thr224 amino acid site. Importantly, Mps1 failed to enhance the transactivational activity of the ERα-T224A mutant. CONCLUSION: Mps1 contributes to tamoxifen resistance in breast cancer and is a potential therapeutic that can overcome tamoxifen resistance in breast cancer.

2.
BMC Genomics ; 24(1): 251, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37165337

ABSTRACT

With the rising demand for entry to extremely high altitudes (HAs), rapid adaptability to extremely hypoxic environments is a challenge that we need to explore. Fasting was used to evaluate acute hypoxia tolerance at HA and was proven to be an effective method for improving the survival rate at extreme HA. Our experiments also showed that fasting pretreatment for 72 h significantly increased the 24 h survival rate of rats at 7620 m from 10 to 85% and protected the myocardium cells of rats. Here, we compared the metabolites and gene expression in the myocardium of SD rats pretreated with fasting and nonfasting at normal altitude and extreme HA. Our findings demonstrated that the dynamic contents of detected differential metabolites (DMs) between different rat groups were consistent with the expression of differentially expressed genes (DEGs), and DM clusters also showed strong correlations with DEG clusters. DM clusters related to amino acids and lipids were significantly lower in the fasting groups, and the correlated DEG clusters were enriched in mitotic pathways, including CDK1, CDC7, NUF2, and MCM6, suggesting that fasting can attenuate mitotic processes in cardiac tissues and reduce the synthesis of amino acids and lipids. L-Glutamine-related metabolites were particularly low at extreme HA without pretreatment but were normal in the fasting groups. The DEGs in the cluster related to L-glutamine-related metabolites were enriched for T-cell receptor V(D)J recombination, the Hippo signaling pathway, the Wnt signaling pathway, the cGMP-PKG signaling pathway, and the mTOR signaling pathway and were significantly downregulated, indicating that the content of L-glutamine decreased at extreme HA, while fasting increased it to adapt to the environment. Moreover, abundant fatty acids were detected when rats were exposed to extreme HA without pretreatment. Our study revealed the fasting and hypoxic environment-related factors in SD rats and provided new insights into the genetic and molecular characteristics in the myocardium, which is critical to developing more potential rapid adaptation methods to extreme HA.


Subject(s)
Glutamine , Hypoxia , Rats , Animals , Rats, Sprague-Dawley , Glutamine/metabolism , Hypoxia/genetics , Hypoxia/metabolism , Myocardium/metabolism , Fasting , Gene Expression , Lipids
3.
Front Cell Infect Microbiol ; 13: 1134511, 2023.
Article in English | MEDLINE | ID: mdl-36936774

ABSTRACT

Introduction: Inflammation play important roles in the initiation and progression of acute lung injury (ALI), acute respiratory distress syndrome (ARDS), septic shock, clotting dysfunction, or even death associated with SARS-CoV-2 infection. However, the pathogenic mechanisms underlying SARS-CoV-2-induced hyperinflammation are still largely unknown. Methods: The animal model of septic shock and ALI was established after LPS intraperitoneal injection or intratracheal instillation. Bone marrow-derived macrophages (BMDMs) from WT and BPOZ-2 KO mouse strains were harvested from the femurs and tibias of mice. Immunohistology staining, ELISA assay, coimmunoprecipitation, and immunoblot analysis were used to detect the histopathological changes of lung tissues and the expression of inflammatory factors and protein interaction. Results and conclusions: We show a distinct mechanism by which the SARS-CoV-2 N (SARS-2-N) protein targets Bood POZ-containing gene type 2 (BPOZ-2), a scaffold protein for the E3 ubiquitin ligase Cullin 3 that we identified as a negative regulator of inflammatory responses, to promote NLRP3 inflammasome activation. We first demonstrated that BPOZ-2 knockout (BPOZ-2 KO) mice were more susceptible to lipopolysaccharide (LPS)-induced septic shock and ALI and showed increased serum IL-1ß levels. In addition, BMDMs isolated from BPOZ-2 KO mice showed increased IL-1ß production in response to NLRP3 stimuli. Mechanistically, BPOZ-2 interacted with NLRP3 and mediated its degradation by recruiting Cullin 3. In particular, the expression of BPOZ-2 was significantly reduced in lung tissues from mice infected with SARS-CoV-2 and in cells overexpressing SARS-2-N. Importantly, proinflammatory responses triggered by the SARS-2-N were significantly blocked by BPOZ-2 reintroduction. Thus, we concluded that BPOZ-2 is a negative regulator of the NLPR3 inflammasome that likely contributes to SARS-CoV-2-induced hyperinflammation.


Subject(s)
Acute Lung Injury , COVID-19 , NLR Family, Pyrin Domain-Containing 3 Protein , Nuclear Proteins , Shock, Septic , Animals , Mice , Acute Lung Injury/metabolism , Cullin Proteins , Inflammasomes/metabolism , Lipopolysaccharides/pharmacology , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , SARS-CoV-2/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism
4.
Cells ; 12(1)2022 12 25.
Article in English | MEDLINE | ID: mdl-36611879

ABSTRACT

Rapid adaptation to extreme hypoxia is a challenging problem, and there is no effective scheme to achieve rapid adaptation to extreme hypoxia. In this study, we found that withaferin A (WA) can significantly reduce myocardial damage, maintain cardiac function, and improve survival in rats in extremely hypoxic environments. Mechanistically, WA protects against extreme hypoxia by affecting BCL2-interacting protein 3 (BNIP3)-mediated mitophagy and the peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α)-mediated mitochondrial biogenesis pathway among mitochondrial quality control mechanisms. On the one hand, enhanced mitophagy eliminates hypoxia-damaged mitochondria and prevents the induction of apoptosis; on the other hand, enhanced mitochondrial biogenesis can supplement functional mitochondria and maintain mitochondrial respiration to ensure mitochondrial ATP production under acute extreme hypoxia. Our study shows that WA can be used as an effective drug to improve tolerance to extreme hypoxia.


Subject(s)
Mitophagy , Organelle Biogenesis , Rats , Animals , Mitochondria/metabolism , Hypoxia/metabolism , Membrane Proteins/metabolism , Mitochondrial Proteins/metabolism
5.
Cell Death Dis ; 12(11): 1045, 2021 11 03.
Article in English | MEDLINE | ID: mdl-34732698

ABSTRACT

Rapid adaptation to a hypoxic environment is an unanswered question that we are committed to exploring. At present, there is no suitable strategy to achieve rapid hypoxic adaptation. Here, we demonstrate that fasting preconditioning for 72 h reduces tissue injuries and maintains cardiac function, consequently significantly improving the survival rates of rats under extreme hypoxia, and this strategy can be used for rapid hypoxic adaptation. Mechanistically, fasting reduces blood glucose and further suppresses tissue mTOR activity. On the one hand, fasting-induced mTOR inhibition reduces unnecessary ATP consumption and increases ATP reserves under acute hypoxia as a result of decreased protein synthesis and lipogenesis; on the other hand, fasting-induced mTOR inhibition improves mitochondrial oxygen utilization efficiency to ensure ATP production under acute hypoxia, which is due to the significant decrease in ROS generation induced by enhanced mitophagy. Our findings highlight the important role of mTOR in acute hypoxic adaptation, and targeted regulation of mTOR could be a new strategy to improve acute hypoxic tolerance in the body.


Subject(s)
Adaptation, Physiological , Fasting/physiology , Hypoxia/physiopathology , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Acute Disease , Adenosine Triphosphate/biosynthesis , Animals , Gene Knockdown Techniques , Lipogenesis , Male , Membrane Proteins/metabolism , Mitochondria/metabolism , Mitochondria/ultrastructure , Mitochondrial Proteins/metabolism , Mitophagy , Models, Biological , Myocardium/pathology , Myocardium/ultrastructure , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Oxygen/metabolism , Oxygen Consumption , Protein Biosynthesis , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Survival Analysis
6.
Biochem Biophys Res Commun ; 569: 161-166, 2021 09 10.
Article in English | MEDLINE | ID: mdl-34252588

ABSTRACT

Acute high-altitude illness seriously threatens the health and lives of people who rapidly ascend to high altitudes, but there is currently no particularly effective method for the prevention or treatment of acute high-altitude illness. In the present study, we found that fasting preconditioning effectively improved the survival rate of rats exposed to a simulated altitude of 7620 m for 24 h, and a novel animal model of rapid adaptation to acute hypoxia was established. Compared with control treatment, fasting preconditioning activated AMPK, induced autophagy, decreased ROS levels, and inhibited NF-κB signaling in the cardiac tissues of rats. Our results suggested that fasting effectively improved the acute hypoxia tolerance of rats, which was gradually enhanced with prolongation of fasting. In addition, the acute hypoxia tolerance of young rats was significantly higher than that of adult rats. These experimental results lay the foundation for achieving rapid adaptation to acute hypoxia in humans.


Subject(s)
Adaptation, Physiological/physiology , Aging/physiology , Fasting/physiology , Hypoxia/physiopathology , AMP-Activated Protein Kinases/metabolism , Age Factors , Animals , Autophagy , Blotting, Western , Kaplan-Meier Estimate , Male , Membrane Proteins/metabolism , Microscopy, Electron, Transmission , Mitochondrial Proteins/metabolism , Myocardium/cytology , Myocardium/metabolism , Myocardium/ultrastructure , NF-kappa B/metabolism , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Signal Transduction
7.
Pflugers Arch ; 472(11): 1619-1630, 2020 11.
Article in English | MEDLINE | ID: mdl-32940783

ABSTRACT

Mitochondria are important sites for the production of ATP and the generation of ROS in cells. However, whether acute hypoxia increases ROS generation in cells or affects ATP production remains unclear, and therefore, monitoring the changes in ATP and ROS in living cells in real time is important. In this study, cardiomyocytes were transfected with RoGFP for ROS detection and MitGO-Ateam2 for ATP detection, whereby ROS and ATP production in cardiomyocytes were respectively monitored in real time. Furthermore, the oxygen consumption rate (OCR) of cardiomyocytes was measured. Similar results were produced for adult and neonatal rat cardiomyocytes. Hypoxia (1% O2) reduced the basal OCR, ATP-linked OCR, and maximal OCR in cardiomyocytes compared with these OCR levels in the cardiomyocytes in the normoxic group (21% O2). However, ATP-linked OCR, normalized to maximal OCR, was increased during hypoxia, indicating that the electron leakage of complex III exacerbated the increase of ATP-linked oxygen consumption during hypoxia and vice versa. Combined with the result that cardiomyocytes expressing MitGO-Ateam2 showed a significant decrease in ATP production during hypoxia compared with that of normoxic group, acute hypoxia might depress the mitochondrial oxygen utilization efficiency of the cardiomyocytes. Moreover, cardiomyocytes expressing Cyto-RoGFP or IMS-RoGFP showed an increase in ROS generation in the cytosol and the mitochondrial intermembrane space (IMS) during hypoxia. All of these results indicate that acute hypoxia generated more ROS in complex III and increased mitochondrial oxygen consumption, leading to less ATP production. In conclusion, acute hypoxia depresses the mitochondrial oxygen utilization efficiency by decreasing ATP production and increasing oxygen consumption as a result of the enhanced ROS generation at mitochondrial complex III.


Subject(s)
Cell Hypoxia , Mitochondria, Heart/metabolism , Myocytes, Cardiac/metabolism , Reactive Oxygen Species/metabolism , Adenosine Triphosphate/metabolism , Animals , Cells, Cultured , Electron Transport Complex III/metabolism , Rats , Rats, Sprague-Dawley
8.
Int J Mol Med ; 44(1): 3-15, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31115493

ABSTRACT

The mammalian mitochondrial electron transport chain (ETC) includes complexes I­IV, as well as the electron transporters ubiquinone and cytochrome c. There are two electron transport pathways in the ETC: Complex I/III/IV, with NADH as the substrate and complex II/III/IV, with succinic acid as the substrate. The electron flow is coupled with the generation of a proton gradient across the inner membrane and the energy accumulated in the proton gradient is used by complex V (ATP synthase) to produce ATP. The first part of this review briefly introduces the structure and function of complexes I­IV and ATP synthase, including the specific electron transfer process in each complex. Some electrons are directly transferred to O2 to generate reactive oxygen species (ROS) in the ETC. The second part of this review discusses the sites of ROS generation in each ETC complex, including sites IF and IQ in complex I, site IIF in complex II and site IIIQo in complex III, and the physiological and pathological regulation of ROS. As signaling molecules, ROS play an important role in cell proliferation, hypoxia adaptation and cell fate determination, but excessive ROS can cause irreversible cell damage and even cell death. The occurrence and development of a number of diseases are closely related to ROS overproduction. Finally, proton leak and uncoupling proteins (UCPS) are discussed. Proton leak consists of basal proton leak and induced proton leak. Induced proton leak is precisely regulated and induced by UCPs. A total of five UCPs (UCP1­5) have been identified in mammalian cells. UCP1 mainly plays a role in the maintenance of body temperature in a cold environment through non­shivering thermogenesis. The core role of UCP2­5 is to reduce oxidative stress under certain conditions, therefore exerting cytoprotective effects. All diseases involving oxidative stress are associated with UCPs.


Subject(s)
Electron Transport Chain Complex Proteins/metabolism , Mitochondria/enzymology , Mitochondrial Uncoupling Proteins/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Signal Transduction , Thermogenesis , Animals , Cell Hypoxia , Cell Proliferation , Humans , Mitochondrial Uncoupling Proteins/genetics
9.
Can J Physiol Pharmacol ; 97(10): 980-988, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31136722

ABSTRACT

The degree and duration of chemical hypoxia induced by sodium dithionite (Na2S2O4) have not been reported. It is not yet clear how much reduction in the O2 concentration (physical hypoxia) can lead to hypoxia in cultured cardiomyocytes. In this study, oxygen microelectrodes were used to measure changes in the O2 concentration in media containing different concentrations of Na2S2O4. Then, hypoxic effects of 0.8, 1.0, and 2.0 mM Na2S2O4 or 1%, 3%, and 5% O2 in cultured cardiomyocytes from neonatal rats were observed and compared. The results showed that the O2 concentration failed to remain constant by Na2S2O4 treatment during the 180-minute observation period. Only the 2.0 mM Na2S2O4 group significantly increased the expression of hypoxia-inducible factor 1α (HIF-1α) and hypoxic responses. Notably, 3% O2 only significantly increased the expression of HIF-1α in cardiomyocytes, while 1% O2 not only increased the expression of HIF-1α but also increased the apoptotic rate in cardiomyocytes. These results suggest that Na2S2O4 is not suitable for establishing a hypoxic model in cultured neonatal rat cardiomyocytes, and neonatal rat cardiomyocytes cultured at or below 1% O2 induced significant hypoxic effects, which can be used as a starting O2 concentration for establishing a hypoxic cell model.


Subject(s)
Culture Media/metabolism , Dithionite/pharmacology , Myocytes, Cardiac/physiology , Oxygen/metabolism , Animals , Animals, Newborn , Cell Hypoxia/drug effects , Cell Hypoxia/physiology , Cells, Cultured , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Myocytes, Cardiac/drug effects , Primary Cell Culture/methods , Rats
10.
Microb Drug Resist ; 22(3): 193-201, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26571297

ABSTRACT

Biofilm formation enhances bacterial resistance and complicates treatment. Therefore, an innovative strategy is urgently needed for the treatment of Staphylococcus aureus biofilm infectious diseases. RNAIII-inhibiting peptide (RIP), as a quorum-sensing inhibitor, inhibits S. aureus biofilm formation. However, RIP possesses poor antibiofilm activity when used alone or at a low dose in vivo. The activity and stability of RIP can be enhanced by designing its derivatives through amino acid substitution, terminal modification, or oligomerization. Among the derivatives, 16P-AC significantly decreased the biofilm formation and adherence of methicillin-resistant S. aureus (MRSA) on polystyrene material by inhibiting the expression level of four biofilm formation-related genes in vitro. Moreover, 16P-AC showed excellent protective effects by decreasing the bacterial titers in the urine, kidney, stent, and bladder, as well as by inhibiting intercellular adhesion on the implanted stent, in a rat urinary tract infection model induced by MRSA. This derivative also exhibited a relatively good stability in rat plasma. Therefore, 16P-AC is a potential drug candidate to treat biofilm-associated infections caused by MRSA. The present modification strategy is feasible to improve the metabolic stability and activity of RIP in vivo.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Oligopeptides/pharmacology , RNA, Bacterial/antagonists & inhibitors , Staphylococcal Infections/drug therapy , Animals , Male , Methicillin/pharmacology , Rats , Rats, Sprague-Dawley , Staphylococcal Infections/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...