Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(25): 36995-37009, 2024 May.
Article in English | MEDLINE | ID: mdl-38758444

ABSTRACT

A series of restoration measures such as municipal wastewater treatment and aquaculture closures have been implemented in Wuhan City during recent years. In order to explore the impact of restoration measures and climate change on lake water quality, long-term (2005-2021) water quality data of 47 lakes were explored to reveal spatiotemporal changes in lake water quality. Percentages of polluted lakes were calculated according to six water-quality parameters, including total phosphorus (TP), ammonia nitrogen (NH3-N), chemical oxygen demand (COD), biological oxygen demand (BOD), chemical oxygen demand using potassium permanganate as oxidant (CODMn) and petroleum contamination (PET), at interannual and monthly timescales. At the interannual timescale, percentages of COD, BOD, CODMn and PET pollution decreased significantly, suggestive of water quality improvement during recent years. At the monthly timescale, low percentages of NH3-N and BOD pollution in March 2020 probably resulted from the sharp reduction in human activities during the COVID-19 lockdown. At the monthly timescale, temperature was positively correlated with percentage of CODMn pollution, but negatively correlated with percentage of NH3-N pollution; precipitation was negatively correlated with percentage of BOD pollution. The similarity of water-quality parameters generally decreased with an increase in geographical distance between each pair of lakes. However, the regression coefficients between the similarity of lake water quality and the geographical distance decreased with time, probably resulting from enhanced similarity of water quality parameters among all lakes with rapid urbanization. Our results highlight the importance of active restoration measures for sustainable management of lakes in Wuhan City, as well as in similar developing regions.


Subject(s)
Lakes , Seasons , Water Quality , Lakes/chemistry , China , Environmental Monitoring , Phosphorus/analysis , Biological Oxygen Demand Analysis , Water Pollutants, Chemical/analysis
2.
Sci Total Environ ; 756: 144140, 2021 Feb 20.
Article in English | MEDLINE | ID: mdl-33293083

ABSTRACT

Swiftly deciphering soil organic matter (SOM) composition is critical for research on soil degradation and restoration. Recent advances in analytical techniques (e.g., optical methods and mass spectrometry) have expanded our understanding of the composition, origin, and evolution of SOM. In particular, the use of Fourier transform ion cyclotron resonance mass spectrometers (FTICR-MS) makes it possible to interpret SOM compositions at the molecular level. In this review, we discuss extraction, enrichment, and purification methods for SOM using FTICR-MS analysis; summarize ionization techniques, FTICR-MS mechanisms, data analysis methods, and molecular compositions of SOM in different environments (providing new insights into its origin and evolution); and discuss factors affecting its molecular diversity. Our results show that digenesis, combustion, pyrolysis, and biological metabolisms jointly contribute to the molecular diversity of SOM molecules. The SOM thus formed can further undergo photodegradation during transportation from land to fresh water (and subsequently oceans), resulting in the formation of dissolved organic matter (DOM). Better understanding the molecular features of DOM therefore accelerates our understanding of SOM evolution. In addition, we assess the degradation potential of SOM in different environments to better inform soil remediation methods. Finally, we discuss the merits and drawbacks of applying FTICR-MS on the analysis of SOM molecules, along with existing gaps in knowledge, challenges, and new opportunities for research in FTICR-MS applications and SOM identification.

SELECTION OF CITATIONS
SEARCH DETAIL
...