Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Commun (Camb) ; 59(50): 7815-7818, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37272281

ABSTRACT

This work designs a functional dendrimer probe to conveniently identify newly generated sialic acid groups in vivo with a dual-color imaging strategy, which achieves in situ semiquantitative evaluation of the sialylation difference between tumor and normal tissues to reveal sialylation-related biological events and promote clinical tumor diagnosis.


Subject(s)
N-Acetylneuraminic Acid , Neoplasms , Humans , Sialic Acids
2.
Chem Sci ; 13(33): 9701-9705, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36091911

ABSTRACT

O-GlcNAcylation is involved in many biological processes including cancerization. Nevertheless, its in situ quantification in single living cells is still a bottleneck. Here we develop a quantitative SERS imaging strategy for mapping the O-GlcNAcylation distribution of single living cells. O-GlcNAcylated compounds (OGCs) can be quantified through their in situ azide labeling and then a click reaction competing with azide and Raman reporter labeled 15 nm-gold nanoparticles (AuNPs) for linking to dibenzocyclooctyne labeled 40 nm-AuNPs to produce OGC-negatively correlated SERS signals. The calibration curve obtained in vitro can be conveniently used for detecting OGCs in different areas of single living cells due to the negligible effect of cell medium on the click linkage and Raman signal. This method has been successfully applied in mapping O-GlcNAcylation distribution in different cell lines and monitoring O-GlcNAcylation variation during cell cycling, which demonstrate its great practicability and expansibility in glycosylation related analysis.

3.
J Environ Manage ; 284: 111994, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33515841

ABSTRACT

Atmospheric Polycyclic Aromatic Hydrocarbons (PAHs) emissions cause non-negligible damage to human health and well-being. Effective regional cooperation is urgently required to mitigate PAHs emissions to maintain satisfactory air quality. This study quantified and tracked China's PAHs emissions flows embodied in interprovincial trade. A production-based emissions inventory of 16 U.S. EPA priority PAHs based on commercial energy consumption in China in 2012 was compiled using the emissions factor approach. Then, a multiregional input-output model was constructed to reveal consumption-based emissions and to track the PAHs emissions embodied in the trade of 27 major sectors across 30 regions in China. Key structural paths were also identified using structural path analysis (SPA). In 2012, the total industrial energy-derived PAHs emissions were estimated to be 47.7 tons of BaP-toxic equivalents (8032.7 tons of mass). Shandong, Hebei, and Hubei accounted for more than 24.0% of the production-side PAHs emissions in the whole country. Approximately 30.8% of China's PAHs emissions were embodied in goods consumed outside of the province in which they were produced. PAHs flow tended to start in the western regions and ended in the eastern regions along the coast. The results of the SPA showed that critical paths, such as from the Metallurgy sector to the Construction sector, embodied a large amount of emissions and had the potential to affect the performance of the entire system. By paying attention to the consumption-based accounting as well as the production-based accounting of emissions and by focusing on vital transfer paths, policymakers can devise effective and targeted environmental protection and sustainable development policies in China.


Subject(s)
Air Pollutants , Air Pollution , Polycyclic Aromatic Hydrocarbons , Air Pollutants/analysis , China , Environmental Monitoring , Humans , Industry , Polycyclic Aromatic Hydrocarbons/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...