Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Environ Sci Technol ; 57(48): 20097-20106, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37955971

ABSTRACT

Plastics are accumulating on Earth, including at sea. The photodegradation of microplastics floating in seawater produces dissolved organic matter (DOM), indicating that sunlight can photodissolve microplastics at the sea surface. To characterize the chemistry of DOM produced as microplastics photodissolve, three microplastics that occur in surface waters, polyethylene (PE), polypropylene (PP), and expanded polystyrene (EPS), were incubated floating on seawater in both the light and the dark. We present the molecular signatures of the DOM produced during these incubations, as determined via ultrahigh-resolution mass spectrometry. Zero to 12 products were identified in the dark, whereas 319-705 photoproducts were identified in the light. Photoproduced DOM included oxygen atoms, indicating that soluble, oxygen-containing organics were formed as plastics photodegrade. PP and PE plastics have hydrogen-to-carbon (H/C) ratios of 2 and generated DOM with average H/C values of 1.7 ± 0.1 to 1.8 ± 0.1, whereas EPS, which has an H/C of 1, generated DOM with an average H/C of 0.9 ± 0.2, indicating the stoichiometry of photoproduced DOM was related to the stoichiometry of the photodegrading polymer. The photodissolution of plastics produced hundreds of photoproducts with varying elemental stoichiometries, indicating that a single abiotic process (photochemistry) can generate hundreds of different chemicals from stoichiometrically monotonous polymers.


Subject(s)
Microplastics , Plastics , Plastics/chemistry , Dissolved Organic Matter , Seawater , Polystyrenes , Polymers , Polypropylenes , Polyethylene , Carbon , Oxygen
2.
Water Res ; 242: 120033, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37244770

ABSTRACT

We fully sequenced the genomes of 16 Vibrio cultivars isolated from eel larvae, plastic marine debris (PMD), the pelagic brown macroalga Sargassum, and seawater samples collected from the Caribbean and Sargasso Seas of the North Atlantic Ocean. Annotation and mapping of these 16 bacterial genome sequences to a PMD-derived Vibrio metagenome-assembled genome created for this study showcased vertebrate pathogen genes closely-related to cholera and non-cholera pathovars. Phenotype testing of cultivars confirmed rapid biofilm formation, hemolytic, and lipophospholytic activities, consistent with pathogenic potential. Our study illustrates that open ocean vibrios represent a heretofore undescribed group of microbes, some representing potential new species, possessing an amalgam of pathogenic and low nutrient acquisition genes, reflecting their pelagic habitat and the substrates and hosts they colonize.


Subject(s)
Seawater , Vibrio , Oceans and Seas , Seawater/microbiology , Vibrio/genetics , Ecosystem , Atlantic Ocean
3.
PNAS Nexus ; 2(3): pgad070, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37007708

ABSTRACT

Due to its ever-increasing ocean inputs, fossil-based microplastics (MP) comprise a considerable constituent in the particulate organic carbon (POC) pool, which is instrumental in ocean biogeochemical cycling. Their distribution within the oceanic water column and the underpinning processes, however, remain unclear. Here we show that MP prevail throughout the water column of the eastern North Pacific Subtropical Gyre, comprising 334 #/m3 (84.5% of plastic particles <100 µm), with exponential relationships between concentrations and water depth in the upper 500-m layer and marked accumulation below this layer. Our results suggest that the biological carbon pump (BCP) strongly contributes to the water column MP redistribution in terms of polymer type, material density and particle size, which in turn could influence the efficiency of organic matter export to the deep sea. We further show that 14C-depleted plastic particles predictably are an emerging nonneglectable perturbation to radiocarbon signatures in the deep ocean through depletion of the 14C/C ratio in the POC pool. Our data provide insight into vertical MP flux and highlight the potential role of MP in alternating the marine particulate pool and interactions with the BCP.

4.
Glob Chang Biol ; 28(9): 2991-3006, 2022 05.
Article in English | MEDLINE | ID: mdl-35048454

ABSTRACT

Hundreds of studies have surveyed plastic debris in surface ocean gyre and convergence zones, however, comprehensive microplastics (MPs, ≤5 mm) assessments beneath these surface accumulation areas are lacking. Using in situ high-volume filtration, Manta net and MultiNet sampling, combined with micro-Fourier-transform-infrared imaging, we discovered a high abundance (up to 244.3 pieces per cubic meter [n m-3 ]) of small microplastics (SMPs, characteristically <100 µm) from the surface to near-sea floor waters of the remote South Atlantic Subtropical Gyre. Large horizontal and vertical variations in the abundances of SMP were observed, displaying inverse vertical trends in some cases. SMP abundances in pump samples were more than two orders of magnitude higher than large microplastics (LMPs, >300 µm) concurrently collected in MultiNet samples. Higher-density polymers (e.g., alkyd resins and polyamide) comprised >65% of the total pump sample count, highlighting a discrepancy between polymer compositions from previous ocean surface-based surveys, typically dominated by buoyant polymers such as polyethylene and polypropylene. Contrary to previous reports stating LMP preferentially accumulated at density gradients, SMP with presumably slower sinking rates are much less influenced by density gradients, thus resulting in a more even vertical distribution in the water column, and potentially longer residence times. Overall, our findings suggest that SMP is a critical and largely underexplored constituent of the oceanic plastic inventory. Additionally, our data support that weak current systems contribute to the formation of SMP hotspots at depth, implying a higher encounter rate for subsurface particle feeders. Our study unveils the prevalence of plastics in the entire water column, highlighting the urgency for more quantification of the deep-ocean MP, particularly the smaller size fraction, to better understand ecosystem exposure and to predict MP fate and impacts.


Subject(s)
Microplastics , Water Pollutants, Chemical , Atlantic Ocean , Ecosystem , Environmental Monitoring , Oceans and Seas , Plastics , Water Pollutants, Chemical/analysis
6.
ISME J ; 15(1): 67-77, 2021 01.
Article in English | MEDLINE | ID: mdl-32879460

ABSTRACT

Trillions of plastic debris fragments are floating at sea, presenting a substantial surface area for microbial colonization. Numerous cultivation-independent surveys have characterized plastic-associated microbial biofilms, however, quantitative studies addressing microbial carbon biomass are lacking. Our confocal laser scanning microscopy data show that early biofilm development on polyethylene, polypropylene, polystyrene, and glass substrates displayed variable cell size, abundance, and carbon biomass, whereas these parameters stabilized in mature biofilms. Unexpectedly, plastic substrates presented lower volume proportions of photosynthetic cells after 8 weeks, compared to glass. Early biofilms displayed the highest proportions of diatoms, which could influence the vertical transport of plastic debris. In total, conservative estimates suggest 2.1 × 1021 to 3.4 × 1021 cells, corresponding to about 1% of the microbial cells in the ocean surface microlayer (1.5 × 103 to 1.1 × 104 tons of carbon biomass), inhabit plastic debris globally. As an unnatural addition to sea surface waters, the large quantity of cells and biomass carried by plastic debris has the potential to impact biodiversity, autochthonous ecological functions, and biogeochemical cycles within the ocean.


Subject(s)
Carbon , Plastics , Biomass , Conservation of Natural Resources , Environmental Monitoring , Seawater
7.
J Hazard Mater ; 383: 121065, 2020 02 05.
Article in English | MEDLINE | ID: mdl-31518809

ABSTRACT

Trillions of plastic fragments are afloat at sea, yet they represent only 1-2% of the plastics entering the ocean annually. The fate of the missing plastic and its impact on marine life remains largely unknown. To address these unknowns, we irradiated post-consumer microplastics (polyethylene, PE; polypropylene, PP; and expanded polystyrene, EPS), standard PE, and plastic-fragments collected from the surface waters of the North Pacific Gyre under a solar simulator. We report that simulated sunlight can remove plastics from the sea surface. Simulated sunlight also fragmented, oxidized, and altered the color of the irradiated polymers. Dissolved organic carbon (DOC) is identified as a major byproduct of sunlight-driven plastic photodegradation. Rates of removal depended upon polymer chemistry with EPS degrading more rapidly than PP, and PE being the most photo-resistant polymer studied. The DOC released as most plastics photodegraded was readily utilized by marine bacteria. However, one sample of PE microplastics released organics or co-leachates that inhibited microbial growth. Thus, although sunlight may remove plastics from the ocean's surface, leachates formed during plastic photodegradation may have mixed impacts on ocean microbes and the food webs they support.


Subject(s)
Bacteria/metabolism , Carbon/chemistry , Microplastics/chemistry , Photochemistry , Microscopy, Electron, Scanning , Seawater , Solubility , Spectroscopy, Fourier Transform Infrared
8.
Environ Sci Technol ; 53(15): 8776-8784, 2019 Aug 06.
Article in English | MEDLINE | ID: mdl-31305074

ABSTRACT

Microplastics (MP; 1 µm to 1 mm) of various shapes and compositions are ingested by numerous marine animals. Recently, proposals have been made to adopt bivalve molluscs as bioindicators of MP pollution. To serve as indicators of MP pollution, however, the proposed organisms should ingest, without bias, the majority of plastic particles to which they are exposed. To test this premise, eastern oysters, Crassostrea virginica, and blue mussels, Mytilus edulis, were offered variously sized polystyrene microspheres (diameters 19-1000 µm) and nylon microfibers (lengths 75-1075 × diameter 30 µm), and the proportion of each rejected in pseudofeces and egested in feces was determined. For both species, the proportion of microspheres rejected increased from ca. 10-30% for the smallest spheres to 98% for the largest spheres. A higher proportion of the largest microsphere was rejected compared with the longest microfiber, but similar proportions of microfibers were ingested regardless of length. Differential egestion of MP also occurred. As a result of particle selection, the number and types of MP found in the bivalve gut will depend upon the physical characteristics of the particles. Thus, bivalves will be poor bioindicators of MP pollution in the environment, and it is advised that other marine species be explored.


Subject(s)
Crassostrea , Mytilus edulis , Water Pollutants, Chemical , Animals , Environmental Biomarkers , Plastics
9.
Water Res ; 161: 560-569, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31238221

ABSTRACT

The role of rivers as a major transport pathway for all sizes of plastic debris into the ocean is widely recognized. Global modelling studies ranked the Changjiang River as the largest contributor of plastic waste to the marine environment, but these estimates were based on insufficient empirical data. To better understand the role of rivers in delivering terrestrial plastic debris to the ocean, the spatial and temporal patterns of microplastics (MP) in the Changjiang Estuary (CE) and the East China Sea (ECS) were studied based on surface water samples in February, May, and July 2017. A total of 3225 MP (60-5000 µm) were identified by Fourier-transform infrared (FTIR) spectrometry. MP abundance in July was higher than in February and May due to higher river discharge. Density stratification in CE significantly influenced the surface MP abundances. A temporal accumulation zone within the river-sea interface for plastics was indicated by stations with apparently higher abundances in the river plume. Fibers were the most common MP (>80%) over three months. Small MP (<1000 µm) composed 75.0% of the total plastics on average. The average mass of MP was 0.000033 g/particle, which was two orders of magnitude lower than the empirical mass in literature. Without considering tidal effects, we estimate 16-20 trillion MP particles, weighing 537.6-905.9 tons, entered the sea through the surface water layer of the Changjiang River in 2017. These findings of this study provide reliable information on MP waste in a large river, which should be considered in further studies for estimating the riverine plastic loads.


Subject(s)
Plastics , Water Pollutants, Chemical , China , Environmental Monitoring , Estuaries , Rivers
10.
Environ Sci Technol ; 52(19): 11038-11048, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30156835

ABSTRACT

Marine aggregates incorporate particles from the environment, including microplastic (MP). The characteristics of MP in aggregates and the role of aggregates in linking MP with marine organisms, however, are poorly understood. To address these issues, we collected aggregates and blue mussels, Mytulis edulis, at Avery Point, CT, and analyzed samples with microspectrometers. Results indicate that over 70% of aggregates sampled harbored MP (1290 ± 1510 particles/m3). Fifteen polymer types were identified, with polypropylene, polyester and synthetic-cellulose accounting for 44.7%, 21.2% and 10.6%, respectively, of the total MP count. Over 90% of MP in aggregates were ≤1000 µm, suggesting that aggregations are a sink for this size fraction. Although size, shape, and chemical type of MP captured by mussels were representative of those found in aggregates, differences in the sizes of MP in pseudofeces, feces and digestive gland/gut were found, suggesting size-dependent particle ingestion. Over 40% of the MP particles were either rejected in pseudofeces or egested in feces. Our results are the first to identify a connection between field-collected marine aggregates and bivalves, and indicate that aggregates may play an important role in removing MP from the ocean surface and facilitating their transfer to marine food webs.


Subject(s)
Mytilus edulis , Water Pollutants, Chemical , Animals , Aquatic Organisms , Plastics , Seafood
11.
Sci Total Environ ; 624: 48-54, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29247904

ABSTRACT

Plastic trash is common in oceans. Terrestrial and marine ecosystem interactions occur in the intertidal zone where accumulation of plastic frequently occurs. However, knowledge of the plastic-associated microbial community (the plastisphere) in the intertidal zone is scanty. We used high-throughput sequencing to profile the bacterial communities attached to microplastic samples from intertidal locations around the Yangtze estuary in China. The structure and composition of plastisphere communities varied significantly among the locations. We found the taxonomic composition on microplastic samples was related to their sedimentary and aquatic origins. Correlation network analysis was used to identify keystone bacterial genera (e.g. Rhodobacterales, Sphingomonadales and Rhizobiales), which represented important microbial associations within the plastisphere community. Other species (i.e. potential pathogens) were considered as hitchhikers in the plastic attached microbial communities. Metabolic pathway analysis suggested adaptations of these bacterial assemblages to the plastic surface-colonization lifestyle. These adaptations included reduced "cell motility" and greater "xenobiotics biodegradation and metabolism." The findings illustrate the diverse microbial assemblages that occur on microplastic and increase our understanding of plastisphere ecology.


Subject(s)
Bacteria/classification , Estuaries , Plastics , Water Microbiology , Water Pollutants, Chemical , Bacteria/isolation & purification , China , Oceans and Seas
12.
Sci Total Environ ; 550: 1110-1115, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26874248

ABSTRACT

The level of contamination by microscopic anthropogenic litter (0.5-5mm) in terrestrial ecosystems is not well understood. After chemical digestion in 10% KOH, microscopic anthropogenic litter from the gastrointestinal tracts of 17 terrestrial birds was identified and categorized under a stereomicroscope based on its physical properties and melting tests. In total, 364 items from 16 birds were identified as microscopic anthropogenic litter, ranging in size from 0.5 to 8.5mm. No relationship between plastic load and body condition was found. Natural fibers, plastic fibers and fragmented plastics represented, respectively, 37.4% (136 items), 54.9% (200 items) and 7.7% (28 items) of total litter items. Small sample sizes limited our ability to draw strong conclusions about the metabolism of natural fibers, but the decline in the proportion of natural fibers from the esophagus to stomach to intestine suggested that they may be digestible. Particles smaller than 5mm represented more than 90% of the total number of pollutant items. Particles with colors in the mid-tones and fibrous shapes were overwhelmingly common particles. The results reflect pollution by microscopic anthropogenic litter in the terrestrial ecosystem of the study area. Microscopic natural fibers, which may disperse and adsorb chemical pollutants differently from microplastic and may pose an even greater risk, are in urgent need of further research.


Subject(s)
Birds , Environmental Monitoring , Waste Products/analysis , Water Pollutants, Chemical/analysis , Animals , China , Plastics/analysis
13.
Environ Pollut ; 206: 597-604, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26312741

ABSTRACT

Estuarine Microplastics (MPs) are limited to know globally. By filtering subsurface water through 330 µm nets, MPs in Jiaojiang, Oujiang Estuaries were quantified, as well as that in Minjiang Estuary responding to Typhoon Soulik. Polymer matrix was analyzed by Raman spectroscopy. MP (<5 mm) comprised more than 90% of total number plastics. The highest MPs density was found in Minjiang, following Jiaojiang and Oujiang. Fibers and granules were the primary shapes, with no pellets found. Colored MPs were the majority. The concentrations of suspended microplastics determine their bioavailability to low trophic organisms, and then possibly promoting the transfer of microplastic to higher trophic levels. Polypropylene and polyethylene were the prevalent types of MPs analyzed. Economic structures in urban estuaries influenced on MPs contamination levels. Typhoon didn't influence the suspended MP densities significantly. Our results provide basic information for better understanding suspended microplastics within urban estuaries and for managerial actions.


Subject(s)
Environmental Monitoring/methods , Estuaries , Plastics/analysis , Urbanization , Water Pollutants, Chemical/analysis , China , Plastics/chemistry
14.
Mar Pollut Bull ; 86(1-2): 562-568, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25023438

ABSTRACT

Levels of microplastics (MPs) in China are completely unknown. This study characterizes suspended MPs quantitatively and qualitatively for the Yangtze Estuary and East China Sea. MPs were extracted via a floatation method. MPs were counted and categorized according to shape and size under a stereomicroscope. The MP densities were 4137.3±2461.5 and 0.167±0.138 n/m(3), respectively, in the estuarine and the sea samples. Plastic abundances varied significantly in the estuary. Higher densities in three sea trawls confirmed that rivers were the important sources of MP to the marine environment. Plastic particles (>5mm) were observed with a maximum size of 12.46 mm, but MPs (0.5-5 mm) constituted more than 90% by number of items. The most frequent geometries were fibres, followed by granules and films. Plastic spherules occurred sparsely. Transparent and coloured plastics comprised the majority of the particles. This study provides clues in understanding the fate and potential sources of MPs.


Subject(s)
Plastics/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , China , Environmental Monitoring/methods , Estuaries , Water Pollution, Chemical/analysis
15.
PLoS One ; 8(9): e73540, 2013.
Article in English | MEDLINE | ID: mdl-24039976

ABSTRACT

Many aquatic organisms respond phenotypically, through morphological, behavioral, and physiological plasticity, to environmental changes. The small-size cladoceran Bosminalongirostris, a dominant zooplankter in eutrophic waters, displayed reduced growth rates in response to the presence of a toxic cyanobacterium, Microcystisaeruginosa, in their diets. The magnitude of growth reduction differed among 15 clones recently isolated from a single population. A significant interaction between clone and food type indicated a genetic basis for the difference in growth plasticity. The variation in phenotypic plasticity was visualized by plotting reaction norms with two diets. The resistance of each clone to dietary cyanobacteria was measured as the relative change in growth rates on the "poor" diet compared with the "good" diet. The enhanced resistance to M. aeruginosa in B. longirostris was derived from both the reduced slope of reaction norms and the increased mean growth rates with two diets. The large clonal variation within a B. longirostris population may contribute to local adaptation to toxic cyanobacteria and influence ecosystem function via clonal succession.


Subject(s)
Cladocera/growth & development , Cladocera/microbiology , Microcystis/physiology , Adaptation, Physiological , Animals , Cladocera/genetics , Cladocera/physiology , Eating , Ecosystem , Genetic Variation , Phenotype
16.
Environ Pollut ; 178: 142-6, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23570781

ABSTRACT

Cyanobacterial blooms are becoming potent agents of natural selection in aquatic ecosystems because of their high production of some toxins and increased frequency in recent decades with eutrophication and climate change. Maternal exposure to the toxic Microcystis aeruginosa significantly increased the intrinsic rates of population increase, average life span, and net reproductive rates of a clone of the planktonic grazer Daphnia carinata in an offspring environment where cyanobacteria were present, but not for two additional clones. Offspring from mothers exposed to M. aeruginosa had lower intrinsic rates of population increase, average life span, and net reproductive rates than individuals from unexposed mothers when fed exclusively a green alga. These results suggest that benefits, costs, and clonal variations of maternal effects of inducible tolerance should be considered when trying to understand ecological consequences of cyanobacterial blooms since they can shape the trophic interactions between cyanobacteria and daphnids.


Subject(s)
Adaptation, Physiological/genetics , Marine Toxins/toxicity , Maternal Exposure , Microcystins/toxicity , Microcystis , Water Pollutants, Chemical/toxicity , Animals , Daphnia/physiology , Epigenesis, Genetic , Feeding Behavior , Female
SELECTION OF CITATIONS
SEARCH DETAIL
...