Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 640: 67-77, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36841173

ABSTRACT

Electrocatalytic N2 reduction reaction (eNRR) was an effective alternative method for green synthesis of NH3. By combining the first-principal Density functional theory (DFT) calculations and Monte Carlo (MC) simulation, we systematacially investigated 24 types equal-ratio bimetallic MXene solid solution, involving 88 different catalysts. Our focus was on the catalytic performance of these materials in eNRR. The computational result indicate that MoW(3Mo) has high stability, selectivity (93.8 % against the hydrogen evolution reaction (HER)) and activity (UL = -0.26 V), which is significantly better than that of monometal Mo2CO2 and W2CO2. This improvement in catalytic properties is attributed to the unique electronic structure (e.g. d-band center, charge) of bimetallic MXene solid solution. In explicit solvent conditions, the microenvironment of hydrogen bond in aqueous liquid thermodynamically promotes the catalytic property for eNRR and reduce the catalytic property of HER side reaction, but the kinetic barrier is also increased due to the effect of the hydrogen-bond microenvironment on proton migration. Overall, the obtained bimetallic MXene solid solution MoW(3Mo) exhibits excellent catalytic performance in eNRR.

2.
J Colloid Interface Sci ; 637: 76-84, 2023 May.
Article in English | MEDLINE | ID: mdl-36682120

ABSTRACT

Electronic regulation via interface engineering is recognized as an attractive strategy for boosting electrocatalytic activity. In this work, a self-supported heterostructure electrocatalyst is explored by a feasible hydrothermal-pyrolysis strategy, in which Ni2P nanoparticles are anchored on NiMoP2 nanosheet arrays grown on carbon cloth (Ni2P/NiMoP2/CC). Benefitting from the nanosheet array architecture and the synergy effect between the Ni2P and NiMoP2, the as-prepared Ni2P/NiMoP2/CC manifests highly efficient activity and stability toward both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Density functional theory calculations further indicates that the heterointerface in Ni2P/NiMoP2/CC enable optimized interface electron structure and reduce the activation barriers for intermediates, improving the intrinsic electrocatalytic activity. Remarkably, the Ni2P/NiMoP2/CC||Ni2P/NiMoP2/CC electrolyzer affords 10 mA cm-2 at a low voltage of 1.59 V, outperforming its monometallic phosphides counterparts and most of transition metal-based bifunctional electrocatalysts. The electrolyser was powered by a solar cell to produce H2 and O2 simultaneously, indicating its potential application in solar-to-hydrogen conversion.

SELECTION OF CITATIONS
SEARCH DETAIL
...