Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 14(32): 22792-22798, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39035721

ABSTRACT

Within the milieu of immune dysfunction, reactive oxygen species (ROS) play a pivotal role in inducing immunogenic cell death (ICD), countering the dysregulated tumor microenvironment. However, the administration of ROS at indiscriminate dosages may provoke deleterious immune responses. Therefore, precise regulation of ROS production is crucial to achieve efficacious therapeutic outcomes. We engineered an innovative afterglow nanosystem which is capable of real-time monitoring of ROS levels. Our findings reveal that Ru/CYQ@CPPO exhibits a markedly enhanced and prolonged afterglow luminescence, coupled with superior singlet oxygen (O2) generation, compared to the commercially available indocyanine green (ICG). In vitro studies demonstrated that Ru/CYQ@CPPO exhibits remarkable efficacy in photodynamic therapy (PDT) under irradiation at a wavelength of 450 nm. Furthermore, a significant correlation (R 2 = 0.987) was observed between the intensity of afterglow luminescence and the rate of cancer cell inhibition.

2.
ACS Appl Mater Interfaces ; 16(7): 8238-8249, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38345938

ABSTRACT

Infectious chronic wounds have gradually become a major clinical problem due to their high prevalence and poor treatment outcomes. The urgent need for wound dressings with immune modulatory, antibacterial, and angiogenic properties has led to the development of innovative solutions. Asiatic acid (AA), derived from herbs, has demonstrated excellent antibacterial, anti-inflammatory, and angiogenic effects, making it a promising candidate for incorporation into hydrogel carriers for wound healing. However, there is currently no available report on AA-based self-assembled hydrogels. Here, a novel hybrid hydrogel dressing consists of interpenetrating polymer networks composed of self-assembled magnesium ion (Mg2+) coordinated asiatic acid (AA-Mg) and bacterial cellulose (BC) is developed to promote infected chronic wound healing. A natural carrier-free self-assembled AA-Mg hydrogel with good injectable and self-healing properties could maintain the sustained release of AA and Mg2+ over an extended period. Notably, the introduction of Mg2+ boosted some pharmacological effects of self-assembled hydrogels due to its excellent anti-inflammatory and angiogenesis. In vitro studies confirmed the exceptional biocompatibility, antibacterial efficacy, and anti-inflammatory potential of the AA-Mg/BC hybrid hydrogel, which also exhibited a commendable mechanical strength. Furthermore, in vivo biological results displayed that the hybrid hydrogel significantly accelerated the wound healing process by boosting dense and organized collagen deposition and the granulation tissue and benefiting revascularization. The introduced self-assembled AA-Mg-based hydrogel offers a promising solution for the effective management of chronic wounds. This universal strategy for the preparation of self-assembled hydrogels modulated with bioactive divalent metal ions is able to excavate more herbal small molecules to construct new self-assembled biomaterials.


Subject(s)
Cellulose , Hydrogels , Pentacyclic Triterpenes , Hydrogels/pharmacology , Cellulose/pharmacology , Wound Healing , Bacteria , Anti-Bacterial Agents/pharmacology , Anti-Inflammatory Agents/pharmacology
3.
J Oncol ; 2022: 7149686, 2022.
Article in English | MEDLINE | ID: mdl-36090904

ABSTRACT

Circulating tumor cells (CTCs) play a crucial role in tumor recurrence and metastasis, and their early detection has shown remarkable benefits in clinical theranostics. However, CTCs are extremely rare, thus detecting them in the blood is very challenging. New CTC detection techniques are continuously being developed, enabling deeper analysis of CTC biology and potential clinical application. This article reviews current CTC detection techniques and their clinical application. CTCs have provided, and will continue to provide, important insights into the process of metastasis, which could lead to development of new therapies for different cancers.

4.
Nanoscale Res Lett ; 16(1): 170, 2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34842995

ABSTRACT

The second near infrared window is considered to be the optimal optical window for medical imaging and therapy as its capability of deep tissue penetration. The preparation of the gold nanorods with long wavelength absorption and low cytotoxicity is still a challenge. A series gold nanorods with large aspect ratio have been synthesized. Strong plasma absorption in the second near infrared window from 1000 to 1300 nm could be observed. The biocompatibility of the synthesized gold nanorods is dramatically improved via coating by bovine serum albumin (BSA), while the optical properties of which remains. The breast cancer tumor-bearing mouse could be well treated by the prepared gold nanorods with the NIR-II light intensity as low as 0.75 W/cm2. In summary, these results demonstrate the feasibility of using low illumination dose to treat tumor in the NIR-II region via the large aspect ratio gould nanoparticles.

SELECTION OF CITATIONS
SEARCH DETAIL
...