Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(24): 21549-21558, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37360429

ABSTRACT

In this study, we present an innovative environmental silicon-, phosphorus-, and nitrogen-triple lignin-based flame retardant (Lig-K-DOPO). Lig-K-DOPO was successfully prepared by condensation of lignin with flame retardant intermediate DOPO-KH550 synthesized via Atherton-Todd reaction between 9, 10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) and γ-aminopropyl triethoxysilane (KH550A). The presence of silicon, phosphate, and nitrogen groups was characterized by FTIR, XPS, and 31P NMR spectroscopy. Lig-K-DOPO exhibited advanced thermal stability compared with pristine lignin supported by TGA analysis. The curing characteristic measurement showed that addition of Lig-K-DOPO promoted the curing rate and crosslink density to styrene butadiene rubber (SBR). Moreover, the cone calorimetry results indicated Lig-K-DOPO conferred impressive flame retardancy and smoke suppression. The addition of 20 phr Lig-K-DOPO reduced SBR blends 19.1% peak heat release rate (PHRR), 13.2% total heat release (THR), 53.2% smoke production rate (SPR), and 45.7% peak smoke production rate (PSPR). This strategy provides insights into multifunctional additives and greatly extends the comprehensive utilization of industrial lignin.

2.
Polymers (Basel) ; 15(8)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37112013

ABSTRACT

To meet the comprehensive demand for flexible microwave absorbing (MA) materials, a novel MA rubber containing homemade Polypyrrole nanotube (PPyNT) is produced based on the natural rubber (NR) and acrylonitrile-butadiene rubber (NBR) blends. To achieve the optimal MA performance in the X band, the PPyNT content and NR/NBR blend ratio are adjusted in detail. The 6 phr PPyNT filled NR/NBR (90/10) composite has the superior MA performance with the minimum reflection loss value of -56.67 dB and the corresponding effective bandwidth of 3.7 GHz at a thickness of 2.9 mm, which has the merits in virtue of achieving strong absorption and wide effective absorption band with low filler content and thickness compared to most reported microwave absorbing rubber materials over the same frequency. This work provides new insight into the development of flexible microwave-absorbing materials.

3.
Polymers (Basel) ; 14(16)2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36015653

ABSTRACT

The effects of three trimethoxysilanes with different functional groups on the rheology, dynamic and mechanical properties of ethylene propylene diene rubber (EPDM)/calcium carbonate (CaCO3) composites were investigated respectively. The results showed that the addition of silane increased the value of MH and MH-ML of the compounds. Geniosil XL 33 silane decreased the shear modulus of the EPDM/CaCO3 compounds, and the bound rubber content increased slightly with the addition of vinyl trimethoxy silane (VTMS) and methylacryloxy-methyltrimethoxysilane (Geniosil XL 33) silane in the compounds. The vulcanizates with the addition of the VTMS and Geniosil XL 33 silane showed a significant increase in tensile strength and abrasion resistance; however, ethyltrimethoxysilane (ETMS) silane weakened the tensile strength and abrasion resistance of the vulcanizates. At low strain, the cross-linking and reaggregation of fillers resulted in a high storage modulus of vulcanizates with silane. When the strain exceeded 10%, the storage modulus of the vulcanizates with the Geniosil XL 33 and VTMS silane was higher. The loss modulus and tan δ of the vulcanized rubber with the Geniosil XL 33 and VTMS silanes were lower compared to the ETMS and 0 silane.

4.
RSC Adv ; 11(56): 35703-35710, 2021 Oct 28.
Article in English | MEDLINE | ID: mdl-35493166

ABSTRACT

In this study, rim strip (R) and sidewall (S) compounds were prepared at varying initial mixing temperatures. The effects of the mixing temperature on the extrusion rheological behaviors of the compounds were investigated, and the relationships between the compound structure and the extrusion rheological behaviors were studied. The results showed that the tensile stress relaxation rates of both R and S were more sensitive to the mixing temperature than the shear stress relaxation rate, and the former was affected by both the dispersion of carbon black (CB) and the actual molecular weight of the rubbers. Strain sweep results showed that R, which had a higher CB content, had a more obvious Payne effect than S. When the initial mixing temperature increased from 80 °C to 90 °C, both storage modulus (G') at a low shear strain and the ΔG' of R obviously decreased, indicating CB dispersion improvement. The S extrudates showed higher die swell ratios (B) than the R extrudates, and the former was more sensitive to mixing temperature. The main factors influencing the B of the R and S were the CB dispersity and the molecular weight, respectively. In addition, at high extrusion rates, a sharkskin phenomenon could be observed for the R extrudate surfaces, whereas the S extrudates were more likely to be integrally distorted.

SELECTION OF CITATIONS
SEARCH DETAIL
...