Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Med Mol Morphol ; 57(2): 91-100, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38316697

ABSTRACT

Interleukin 32 (IL-32) is a proinflammatory cytokine secreted from several kinds of cancer cells. In the present study, we investigated the significance of IL-32 in lung adenocarcinoma by immunohistochemistry and bioinformatics analysis. IL-32 was positive in cancer cells of 21 cases (9.2%) of total 228 cases. Increased IL-32 gene expression was linked to worse clinical course in TCGA analysis, however, IL-32 expression in immunohistochemistry was not associated to clinical course in our cohort. It was also found that high IL-32 expression was seen in cases with increased lymphocyte infiltration. In vitro studies indicated that IFN-γ induced gene expression of IL-32 and PD1-ligands in lung adenocarcinoma cell lines. IL-32, especially IL-32ß, also induced overexpression of PD1-ligands in human monocyte-derived macrophages. Additionally, Cancer-cell-derived IL-32 was elevated by stimulation with anticancer agents. In conclusion, IL-32 potentially induced by inflammatory conditions and anticancer therapy and contribute to immune escape of cancer cells via development the immunosuppressive microenvironment. IL-32 might be a target molecule for anti-cancer therapy.


Subject(s)
Adenocarcinoma of Lung , Interleukins , Lung Neoplasms , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Interleukins/metabolism , Interleukins/genetics , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Macrophages/immunology , Macrophages/metabolism , Interferon-gamma/metabolism , Interferon-gamma/genetics , Interferon-gamma/immunology , Immunohistochemistry , Male , A549 Cells
2.
Cancers (Basel) ; 15(8)2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37190178

ABSTRACT

Macrophages are a representative cell type in the tumor microenvironment. Macrophages that infiltrate the cancer microenvironment are referred to as tumor-associated macrophages (TAMs). TAMs exhibit protumor functions related to invasion, metastasis, and immunosuppression, and an increased density of TAMs is associated with a poor clinical course in many cancers. Phosphoprotein 1 (SPP1), also known as osteopontin, is a multifunctional secreted phosphorylated glycoprotein. Although SPP1 is produced in a variety of organs, at the cellular level, it is expressed on only a few cell types, such as osteoblasts, fibroblasts, macrophages, dendritic cells, lymphoid cells, and mononuclear cells. SPP1 is also expressed by cancer cells, and previous studies have demonstrated correlations between levels of circulating SPP1 and/or increased SPP1 expression on tumor cells and poor prognosis in many types of cancer. We recently revealed that SPP1 expression on TAMs is correlated with poor prognosis and chemoresistance in lung adenocarcinoma. In this review, we summarize the significance of TAMs in lung cancers and discuss the importance of SPP1 as a new marker for the protumor subpopulation of monocyte-derived TAMs in lung adenocarcinoma. Several studies have shown that the SPP1/CD44 axis contribute to cancer chemoresistance in solid cancers, so the SPP1/CD44 axis may represent one of the most critical mechanisms for cell-to-cell communication between cancer cells and TAMs.

4.
J Cancer ; 10(7): 1651-1662, 2019.
Article in English | MEDLINE | ID: mdl-31205521

ABSTRACT

An increasing number of studies have suggested the dysbiosis of salivary microbiome has been linked to the advancement of multiple diseases and proved to be helpful for the diagnosis of them. Although epidemiological studies of salivary microbiota in carcinogenesis are mounting, no systemic study exists regarding the oral microbiota of non-small cell lung cancer (NSCLC) patients. In this study, we presented the characteristics of the salivary microbiota in patients from NSCLC and healthy controls by sequencing of the 16S rRNA microbial genes. Our result revealed distinct salivary microbiota composition in patients from NSCLC compared to the healthy controls. As principal co-ordinates analysis (PCoA) showed, saliva samples clearly differed between the two groups, considering the weighted (p = 0.001, R2 = 0.17), and unweighted (p = 0.001, R2 = 0.25) UniFrac distance. Phylum Firmicutes (31.69% vs 24.25%, p < 0.05) and its two genera Veillonella (15.51%% vs 9.35%, p < 0.05) and Streptococcus (9.96% vs 6.83%, p < 0.05) were strongly increased in NSCLC group compared to the controls. Additionally, the relative abundances of Fusobacterium (3.06% vs 4.92%, p = 0.08), Prevotella (1.45% vs 3.52%, p < 0.001), Bacteroides (0.56% vs 2.24%, p < 0.001), and Faecalibacterium (0.21% vs 1.00%, p < 0.001) in NSCLC group were generally decreased. Furthermore, we investigated the correlations between systemic inflammation markers and salivary microbiota. Neutrophil-lymphocyte ratio (NLR) positively correlated with the Veillonella (r =0.350, p = 0.007) and lymphocyte-monocyte ratio (LMR) negatively correlated with Streptococcus (r =-0.340, p = 0.008). Additionally, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways inferred by phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) showed that pathways related to xenobiotics biodegradation and metabolism (p < 0.05) and amino acid metabolism (p < 0.05) were enriched in the NSCLC group. Folate biosynthesis (p < 0.05) significantly decreased in NSCLC group. The specific correlations of clinical systemic inflammation markers and predicted KEGG pathways also could pronounce a broad understanding of salivary microbiota in patients with NSCLC. Moreover, our study extended the new sight into salivary microbiota-targeted interventions to clinically improve the therapeutic strategies for salivary dysbiosis in NSCLC patients. Further investigations of the potential mechanism of salivary microbiota in the progression of NSCLC are still in demand.

5.
Oncol Lett ; 17(4): 3817-3825, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30881502

ABSTRACT

The clinical significance of circulating tumor cells (CTCs) in patients with esophageal squamous cell carcinoma (ESCC) who have undergone radical surgery was investigated. A novel confirmation method for identifying CTCs or circulating tumor microemboli (CTM) in ESCC was also investigated. Blood samples from 55 patients with ESCC were collected 1-3 days prior to surgery and 7 days post-surgery. All patients underwent curative thoracic esophagectomy and lymphadenectomy. Blood samples from 20 healthy volunteers were obtained as controls. Isolation by size of epithelial tumor cells (ISET) was performed also. The overall CTC detection rate was 52.7% preoperatively and 49.1% postoperatively. The presence of CTCs correlated with the Tumor-Node-Metastasis stage and the Log odds of positive lymph nodes. No significant difference in perioperative CTC transformation was discovered between the thoracoscopic and laparoscopic approach, and the open approach. The P40+/cluster of differentiation (CD)45- phenotype was confirmed in the CTCs and CTM. ISET appeared to have high sensitivity for detecting CTCs within ESCC patients. Immunofluorescence staining for CD45 and P40 was a specific, accurate and convenient method for confirming the presence of CTCs or CTM in patients with ESCC, and is strongly recommended as a supplement to morphological analysis.

6.
Am J Transl Res ; 10(10): 3171-3185, 2018.
Article in English | MEDLINE | ID: mdl-30416659

ABSTRACT

Emerging evidence suggests the microbiome may affect a number of diseases, including lung cancer. However, the direct relationship between gut bacteria and lung cancer remains uncharacterized. In this study, we directly sequenced the hypervariable V1-V2 regions of the 16S rRNA gene in fecal samples from patients with lung cancer and healthy volunteers. Unweighted principal coordinate analysis (PCoA) revealed a clear difference in the bacterial community membership between the lung cancer group and the healthy control group. The lung cancer group had remarkably higher levels of Bacteroidetes, Fusobacteria, Cyanobacteria, Spirochaetes, and Lentisphaerae but dramatically lower levels of Firmicutes and Verrucomicrobia than the healthy control group (P < 0.05). Despite significant interindividual variation, eight predominant genera were significantly different between the two groups. The lung cancer group had higher levels of Bacteroides, Veillonella, and Fusobacterium but lower levels of Escherichia-Shigella, Kluyvera, Fecalibacterium, Enterobacter, and Dialister than the healthy control group (P < 0.05). Most notably, correlations between certain specific bacteria and serum inflammatory biomarkers were identified. Our findings demonstrated an altered bacterial community in patients with lung cancer, providing a significant step in understanding the relationship between gut bacteria and lung cancer. To our knowledge, this is the first study to evaluate the correlations between certain specific bacteria and inflammatory indicators. To better understand this relationship, further studies should investigate the underlying mechanisms of gut bacteria in lung cancer animal models.

SELECTION OF CITATIONS
SEARCH DETAIL
...