Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 7996, 2023 05 17.
Article in English | MEDLINE | ID: mdl-37198205

ABSTRACT

Apigenin (APN), a flavone found in several plant foods with various biological properties such as anti-obesity, anti-inflammation and other abilities, alleviates atherosclerosis and non-alcoholic fatty liver disease (NAFLD) induced by a high fat diet (HFD) in mice. However, the underlying mechanisms have not been fully understood. In this study, we investigated the role of NLRP3 in anti-atherosclerosis and anti-NAFLD effect of APN in mouse models with NLRP3 deficiency. Atherosclerosis and NAFLD models were established by treatment of low density lipoprotein receptor-deficient (Ldlr-/-) mice and NLRP3-/- Ldlr-/- mice with a HFD diet (20% fat and 0.5% cholesterol) with or without APN. En face lipid accumulation analysis, plasma lipid levels, hepatic lipid accumulation and inflammation were analyzed and quantified. For in vitro experiments, HepG2 cells were stimulated by LPS plus oleic acid (OA) in the absence or presence of APN (50 µM). Lipid accumulation and the effect of APN on the NLRP3/NF-κB signaling pathway were investigated. APN administration partly reversed atherosclerosis and hepatic lipid accumulation, and decreased body weight and plasma lipid levels in Ldlr-/- mice when fed a HFD. Compared with Ldlr-/- mice, NLRP3-/- Ldlr-/- mice showed more severe atherosclerosis and hepatic lipid accumulation. Treating the HepG2 cells with APN reduced lipid accumulation. APN also inhibited activation of the NLRP3/ NF-κB signaling pathway stimulated by OA together with LPS. Our results indicate that APN supplementation prevents atherosclerosis and NAFLD via NLRP3 inhibition in mice, and suggest that APN might be a potential therapeutic agent for the prevention of atherosclerosis and NAFLD.


Subject(s)
Atherosclerosis , Non-alcoholic Fatty Liver Disease , Animals , Mice , Non-alcoholic Fatty Liver Disease/metabolism , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Apigenin/pharmacology , Apigenin/therapeutic use , Apigenin/metabolism , NF-kappa B/metabolism , Lipopolysaccharides/pharmacology , Liver/metabolism , Atherosclerosis/drug therapy , Atherosclerosis/prevention & control , Atherosclerosis/metabolism , Diet, High-Fat/adverse effects , Mice, Inbred C57BL
2.
Genet Mol Biol ; 44(3): e20210006, 2021.
Article in English | MEDLINE | ID: mdl-34342605

ABSTRACT

Cotinus coggygria Scop. (Anacardiaceae) is an important ornamental tree with beautiful characteristics that is grown in China. In this study, the complete plastid genome of C. coggygria was sequenced and assembled. This genome was 158,843 bp in size and presented a typical tetrad structure, consisting of a large single-copy region (87,121 bp), a pair of inverted repeat regions (26,829 bp), and a small single-copy region (18,064 bp). A total of 134 genes were annotated, including 88 protein-coding genes, 38 tRNA genes, and 8 rRNA genes. We observed a deletion that caused the loss of the rpl32 gene, and a small expansion of IR regions resulted in the trnH gene accessing IR regions; two copies were obtained. Phylogenetic analysis showed that C. coggygria was most closely related to Pistacia, with 100% bootstrap support within Anacardiaceae. In this study, we report the plastid genome of Cotinus species for the first time, which provides insight into the evolution of the plastid genome in Anacardiaceae and promotes the understanding of Cotinus plants.

3.
J Cancer ; 12(16): 4780-4790, 2021.
Article in English | MEDLINE | ID: mdl-34234849

ABSTRACT

Lung adenocarcinoma (LUAD) is a lethal malignancy with metastasis, a major tumor feature that predominantly correlated with progression, but the molecules that mediated tumor metastasis remain elusive. To declare the critical regulatory genes, RNA sequencing data in LUAD patients was acquired from The Cancer Genome Atlas (TCGA) and found that ALDH3A1 was distinctly highly expressed in LUAD patients with metastasis (M1) compared with those without metastasis (M0), linked to the property of cancer stem cell and epithelial-mesenchymal transition (EMT). Besides, high ALDH3A1 expression predicted a poor prognosis. Knockdown of ALDH3A1 showed decreased proliferation, migration, and invasion in A549 cell line. Furthermore, BAG1 was regulated by ALDH3A1 through p53, enhanced cell proliferation, and predicted clinical prognosis. Our findings collectively uncovered a novel mechanism that orchestrates tumor cells' metastasis, and decreasing ALDH3A1 represented a potential therapeutic target for reprogramming metastasis.

4.
Zhongguo Zhong Yao Za Zhi ; 46(5): 1073-1078, 2021 Mar.
Article in Chinese | MEDLINE | ID: mdl-33787099

ABSTRACT

The study aiming at exploring the potassium-dissolving capacity of rhizosphere potassium-dissolving bacteria from diffe-rent sources and screen the strains with high potassium-dissolving ability, so as to lay a theoretical foundation for cultivation and quality improvement of Paris polyphylla var. yunnanensis sources. The rhizosphere soil of 10 wild and transplanted species from Yunnan, Sichuan and Guizhou provinces was used as the research object. Potassium-dissolving bacteria were isolated and purified, and their potassium-dissolving capacity was determined by flame spectrophotometry, and identified by physiological, biochemical and molecular biological methods. Twenty-six potassium-dissolving bacteria were purified and 13 were obtained from wild and transplanted strains respectively. It was found through the determination of potassium-dissolving capacity that the potassium-dissolving capacity of 26 strains was significantly different, and the mass concentration of K~+ in the fermentation broth were 1.04-2.75 mg·L~(-1), the mcentration of potassium were 0.01-1.82 mg·L~(-1). The strains were identified as Bacillus, Agrobacterium rhizome and Staphylococcus by physiological, biochemical and 16 S rDNA molecular methods, among them Bacillus amylolyticus(4 strains) was the dominant bacterium of Bacillus. The physiology and biochemistry of rhizosphere potassium-dissolving bacteria in P. polyphylla var. yunnanensis rhizosphere were diffe-rent, and the living environment were different, so the potassium-dissolving capacity also changed. Strain Y4-1 with the highest potassium decomposability was Bacillus amylolytic with a potassium increase of 1.82 mg·L~(-1). The potassium-dissolving ability and the distribution of potassium-dissolving bacteria were different in various habitats. The screening of potassium-dissolving bacteria provided a new strain for the preparation of microbial fertilizer. It is expected that B. amyloidococcus Y4-1 can be used as an ideal strain to cultivate mycorrhizal seedlings of P. polyphylla var. yunnanensis.


Subject(s)
Liliaceae , Rhizosphere , China , Paenibacillus , Potassium , Soil
5.
Zhongguo Zhong Yao Za Zhi ; 46(4): 915-922, 2021 Feb.
Article in Chinese | MEDLINE | ID: mdl-33645097

ABSTRACT

The wild resources of Paris polyphylla var. yunnanensis, a secondary endangered medicinal plant, are severely scarce. Introduction and cultivation can alleviate market demand. To screen phosphatolytic bacteria in the rhizosphere soil of P. polyphylla var. yunnanensis and provide data support for the development of high-efficiency microbial fertilizer, in this study, the dilution plate coating method was used to isolate and screen the phosphorus solubilizing bacteria with the ability of mineralizing organic phosphorus from the rhizosphere soil of wild and transplanted varieties of P. polyphylla var. yunnanensis in 10 different locations in Yunnan, Sichuan and Guizhou. After separation and purification, the phosphatolytic capacity was analyzed by qualitative and quantitative analysis. Combined with physiological and biochemical experiments, the strains were identified using 16 S rDNA sequencing analysis. Forty one strains were selected from the rhizosphere soil of P. polyphylla var. yunnanensis from 10 different habitats. Among them, 21 strains were obtained from the rhizosphere soil of the wild variety P. polyphylla var. yunnanensis and 20 strains were obtained from the rhizosphere soil of the transplanted variety. And significance analysis found that 41 organophosphate solubilizing strains had significant differences in their ability to solubilize phosphorus. The amount of phosphate solubilizing was 0.08-67.61 mg·L~(-1), the pH value was between 4.27 and 6.82. The phosphatolytic amount of strain Y3-5 was 67.61 mg·L~(-1), and the phosphorus increase amount was 57.57 mg·L~(-1). All 41 strains were identified as Gram-positive Bacillus. Combining physiological characteristic and phylogenetic trees, Bacillus mobilis Y3-5 was finally selected as the candidate rhizosphere phosphatolytic bacteria of P. polyphylla var. yunnanensis. The distribution of phosphorus solubilizing bacteria in the rhizosphere soil of P. polyphylla var. yunnanensis was different, and there were significant diffe-rences in phosphorus solubility. Organophosphate-dissolving strain Y3-5 is expected to be a candidate strain of P. polyphylla var. yunnanensis microbial fertilizer.


Subject(s)
Liliaceae , Bacillus , Bacteria/genetics , China , Phylogeny
6.
J Biomed Nanotechnol ; 17(4): 606-614, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-35057887

ABSTRACT

A novel approach for the detection of influenza virus is of paramount importance for quick diagnosis and therapy. In this study monoclonal antibody (mAb)-conjugated MNPs/AuNPs were developed to detect the H1N1 virus. MNPs and AuNPs were synthesized and loaded with mAbs. The UV-vis spectra exhibited absorbance at 528 nm. XRD revealed the presence of crystalline particles with various diffraction peaks. FTIR confirmed the occurrence of capping molecules in the synthesized NPs. NP stability was evidenced by zeta measurements. The shape and size (mean size 15 nm) of the NPs were determined using SEM and transmission electron microscopy (TEM). In this study the mAb-AuNPs produced a redshift in the absorption spectrum due to plasmon coupling. The absorption increased when H1N1 concentration increased from 0 to 5.0 ng/mL, with the detection limit being 0.05 ng/mL. The sensitivity of mAb-AuNPs was greater than that of ELISA. Since the mAb-AuNP-based colorimetric immunosensor is simple, cost-effective, and rapidly detects H1N1, it has good prospects in pharmaceuticals and clinical diagnosis.


Subject(s)
Biosensing Techniques , Influenza A virus , Metal Nanoparticles , Nanocomposites , Colorimetry , Gold , Immunoassay , Magnetic Phenomena
7.
Immunology ; 160(2): 209-219, 2020 06.
Article in English | MEDLINE | ID: mdl-32149403

ABSTRACT

CD100 is an immune semaphorin constitutively expressed on T-cells. Matrix metalloproteinase (MMP) is an important mediator of membrane-bound CD100 (mCD100) cleavage to generate soluble CD100 (sCD100), which has immunoregulatory activity in immune cell responses. The aim of the study was to investigate the level and role of sCD100 and mCD100 in modulating CD8+ T-cell function in non-small cell lung cancer (NSCLC). sCD100 and MMP-14 levels in the serum and bronchoalveolar lavage fluid (BALF), and mCD100 expression on peripheral and lung-resident CD8+ T-cells were analysed in NSCLC patients. The ability to induce sCD100 and the effect of MMP-14 on mCD100 shedding for the regulation of non-cytolytic and cytolytic functions of CD8+ T-cells were also analysed in direct and indirect contact co-culture systems. NSCLC patients had lower serum sCD100 and higher mCD100 levels on CD8+ T-cells compared with healthy controls. BALF from the tumour site also had decreased sCD100 and increased mCD100 on CD8+ T-cells compared with the non-tumour site. Recombinant CD100 stimulation enhanced non-cytolytic and cytolytic functions of CD8+ T-cells from NSCLC patients, whereas blockade of CD100 receptor CD72 attenuated CD8+ T-cell activity. NSCLC patients had lower MMP-14 in the serum and in BALF from the tumour site. Recombinant MMP-14 mediated mCD100 shedding from CD8+ T-cell membrane, and led to promotion of CD8+ T-cell response in NSCLC patients. Overall, decreased MMP-14 resulted in insufficient CD100 shedding, leading to suppression of peripheral and lung-resident CD8+ T-cell activity in NSCLC.


Subject(s)
Antigens, CD/metabolism , CD8-Positive T-Lymphocytes/immunology , Carcinoma, Non-Small-Cell Lung/immunology , Lung Neoplasms/immunology , Matrix Metalloproteinase 14/metabolism , Semaphorins/metabolism , Adult , Aged , Antigens, CD/blood , Bronchoalveolar Lavage Fluid/chemistry , CD8-Positive T-Lymphocytes/metabolism , Carcinoma, Non-Small-Cell Lung/blood , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Membrane/metabolism , Coculture Techniques , Female , Humans , Lung/pathology , Lung Neoplasms/blood , Lung Neoplasms/pathology , Lymphocyte Activation , Male , Matrix Metalloproteinase 14/blood , Middle Aged , Primary Cell Culture , Recombinant Proteins/metabolism , Semaphorins/blood , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Tumor Escape , Tumor Microenvironment/immunology
8.
Onco Targets Ther ; 10: 935-944, 2017.
Article in English | MEDLINE | ID: mdl-28243129

ABSTRACT

BACKGROUND: Polydatin (PD) plays an important role in suppressing platelet aggregation, reducing blood lipid, restoring microcirculation and protecting from myocardial ischemia/reperfusion injury and shock. In addition, PD possesses anticancer activity. However, the effect and the mechanism of PD in regulating multiple myeloma (MM) cell survival and death are still unknown. METHODS: Cell proliferation and apoptosis of RPMI 8226 cells, respectively, were analyzed by cell counting kit8 (CCK-8) assay and flow cytometry. The levels of caspase-3, cleaved caspase-3, caspase-9, cleaved caspase-9, Bcl-2 and Bax were analyzed by Western blot. Autophagy induced by PD was investigated by detecting the levels of Beclin 1, Atg5, LC3I, LC3II, HSP70 and HSP27. The autophagy inhibitor 3-methyladenine (3-MA), mTOR/p70s6k inhibitor rapamycin, and mTOR activator MHY1485 were used to analyze the mechanism of cell proliferation, apoptosis and autophagy influenced by PD. The phosphorylations of mTOR and p70s6k were detected by Western blot. RESULTS: A gradual decrease in cell proliferation of RPMI 8226 cells was observed with an increase in PD concentrations (P<0.05). PD also induced cell apoptosis and autophagy in a concentration-dependent manner. Both 3-MA and MHY1485 reversed the inhibitory effect of PD on cell proliferation and attenuated the positive effect of PD on cell apoptosis and autophagy. The phosphorylation of mTOR and p70s6k was significantly suppressed by PD (P<0.05). Furthermore, inhibition of the mTOR/p70s6k signaling pathway by rapamycin significantly induced autophagy and apoptosis and inhibited cell viability (P<0.05). CONCLUSION: PD effectively suppressed cell proliferation and induced apoptosis and autophagy of MM cells via the mTOR/p70s6k signaling pathway in a concentration-dependent manner in vitro, indicating that PD could be a potential anticancer drug for MM therapy.

9.
Med Sci Monit ; 22: 3301-8, 2016 Sep 18.
Article in English | MEDLINE | ID: mdl-27640178

ABSTRACT

BACKGROUND Pulmonary arterial hypertension (PAH) is a fatal disease characterized by impaired regulation of pulmonary artery vascular growth and remodeling. Aberrant expression of miR-17 has been shown to be involved in the pathogenesis of PAH, but its underlying molecular mechanism has not been elucidated. MATERIAL AND METHODS Mitofusin 2 (MFN2) expression was determined by qRT-PCR. The protein expression levels of MFN2, proliferating cell nuclear antigen (PCNA), and pro-apoptotic protein cleaved Caspase-3 were measured using Western blot analysis. Cell proliferation and apoptosis were assessed by CellTiter-Glo reagent and flow cytometry, respectively. Caspase-3/7 activity was measured using an Apo-ONE Homogeneous Caspase-3/7 assay kit. The regulation of miR-17 on MFN2 expression was assessed using luciferase reporter assay system. RESULTS miR-17 expression was upregulated in human pulmonary artery smooth muscle cells (hPASMCs) treated with hypoxia and lung tissues of PAH patients. Inhibition of miR-17 suppressed hypoxia-induced proliferation and promoted apoptosis in hPASMCs. miR-17 inhibited MFN2 expression by binding to its 3'-UTR. Decreased cell viability and increased apoptosis and Caspase-3 activity were observed in the anti-miR-17 + siNC group compared with the anti-miR-NC + siNC group. The expression of cleaved Caspase-3 was upregulated and the expression of PCNA was downregulated in the anti-miR-17 + siNC group. Moreover, these alterations were attenuated by knockdown of MFN2. CONCLUSIONS miR-17 regulates proliferation and apoptosis in hPASMCs through MFN2 modulation. We found that miR-17 acts as a potential regulator of proliferation and apoptosis of hPASMCs, and that it might be developed as a promising new strategy for the treatment of PAH.


Subject(s)
Apoptosis , GTP Phosphohydrolases/metabolism , MicroRNAs/metabolism , Mitochondrial Proteins/metabolism , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Pulmonary Artery/pathology , Up-Regulation/genetics , 3' Untranslated Regions/genetics , Apoptosis/genetics , Base Sequence , Caspase 3/metabolism , Caspase 7/metabolism , Cell Hypoxia , Cell Proliferation , Down-Regulation/genetics , HEK293 Cells , Humans , Hypertension, Pulmonary/pathology , Lung/metabolism , MicroRNAs/genetics
10.
Int J Nanomedicine ; 8: 4315-26, 2013.
Article in English | MEDLINE | ID: mdl-24235829

ABSTRACT

BACKGROUND: Star-shaped polymers provide more terminal groups, and are promising for application in drug-delivery systems. METHODS: A new series of six-arm star-shaped poly(lactic-co-glycolic acid) (6-s-PLGA) was synthesized by ring-opening polymerization. The structure and properties of the 6-s-PLGA were characterized by carbon-13 nuclear magnetic resonance spectroscopy, infrared spectroscopy, gel permeation chromatography, and differential scanning calorimetry. Then, paclitaxel-loaded six-arm star-shaped poly(lactic-co-glycolic acid) nanoparticles (6-s-PLGA-PTX-NPs) were prepared under the conditions optimized by the orthogonal testing. High-performance liquid chromatography was used to analyze the nanoparticles' encapsulation efficiency and drug-loading capacity, dynamic light scattering was used to determine their size and size distribution, and transmission electron microscopy was used to evaluate their morphology. The release performance of the 6-s-PLGA-PTX-NPs in vitro and the cytostatic effect of 6-s-PLGA-PTX-NPs were investigated in comparison with paclitaxel-loaded linear poly(lactic-co-glycolic acid) nanoparticles (L-PLGA-PTX-NPs). RESULTS: The results of carbon-13 nuclear magnetic resonance spectroscopy and infrared spectroscopy suggest that the polymerization was successfully initiated by inositol and confirm the structure of 6-s-PLGA. The molecular weights of a series of 6-s-PLGAs had a ratio corresponding to the molar ratio of raw materials to initiator. Differential scanning calorimetry revealed that the 6-s-PLGA had a low glass transition temperature of 40°C-50°C. The 6-s-PLGA-PTX-NPs were monodispersed with an average diameter of 240.4±6.9 nm in water, which was further confirmed by transmission electron microscopy. The encapsulation efficiency of the 6-s-PLGA-PTX-NPs was higher than that of the L-PLGA-PTX-NPs. In terms of the in vitro release of nanoparticles, paclitaxel (PTX) was released more slowly and more steadily from 6-s-PLGA than from linear poly(lactic-co-glycolic acid). In the cytostatic study, the 6-s-PLGA-PTX-NPs and L-PLGA-PTX-NPs were found to have a similar antiproliferative effect, which indicates durable efficacy due to the slower release of the PTX when loaded in 6-s-PLGA. CONCLUSION: The results suggest that 6-s-PLGA may be promising for application in PTX delivery to enhance sustained antiproliferative therapy.


Subject(s)
Antineoplastic Agents/chemistry , Drug Carriers/chemistry , Lactic Acid/chemistry , Nanoparticles/chemistry , Paclitaxel/chemistry , Polyglycolic Acid/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/toxicity , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Carriers/pharmacology , Drug Carriers/toxicity , Drug Stability , Humans , Lactic Acid/pharmacology , Lactic Acid/toxicity , Nanoparticles/toxicity , Paclitaxel/pharmacology , Paclitaxel/toxicity , Polyglycolic Acid/pharmacology , Polyglycolic Acid/toxicity , Polylactic Acid-Polyglycolic Acid Copolymer , Polyvinyl Alcohol , Sodium Salicylate
SELECTION OF CITATIONS
SEARCH DETAIL
...