Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 58(1): 545-556, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38111342

ABSTRACT

The mitigation of nitrous oxide (N2O) is of primary significance to offset carbon footprints in aerobic granular sludge (AGS) systems. However, a significant knowledge gap still exists regarding the N2O production mechanism and its pathway contribution. To address this issue, the impact of varying granule sizes, dissolved oxygen (DO), and nitrite (NO2-) levels on N2O production by ammonia-oxidizing bacteria (AOB) during nitrification in AGS systems was comprehensively investigated. Biochemical and isotopic experiments revealed that increasing DO or decreasing NO2- levels reduced N2O emission factors (by 13.8 or 19.5%) and production rates (by 0.08 or 0.35 mg/g VSS/h) via weakening the role of the AOB denitrification pathway since increasing DO competed for more electrons required for AOB denitrification. Smaller granules (0.5 mm) preferred to diminish N2O production via enhancing the role of NH2OH pathway (i.e., 59.4-100% in the absence of NO2-), while larger granules (2.0 mm) induced conspicuously higher N2O production via the AOB denitrification pathway (approximately 100% at higher NO2- levels). Nitrifying AGS systems with a unified size of 0.5 mm achieved 42% N2O footprint reduction compared with the system with mixed sizes (0.5-2.0 mm) under optimal conditions (DO = 3.0 mg-O2/L and NO2- = 0 mg-N/L).


Subject(s)
Ammonia , Bacteria , Ammonia/analysis , Ammonia/metabolism , Bacteria/metabolism , Nitrogen Dioxide/analysis , Bioreactors/microbiology , Oxidation-Reduction , Nitrification , Sewage/microbiology , Nitrous Oxide/analysis , Oxygen/analysis , Denitrification
2.
Water Res ; 224: 119037, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36088769

ABSTRACT

The ubiquitous microplastics in wastewater have raised growing concerns due to their unintended effects on microbial activities. However, whether and how microplastics affect nitrous oxide (N2O) (a potent greenhouse gas) turnovers in mainstream biological nitrogen removal (BNR) process remain unclear. This work therefore aimed to fill such knowledge gap by conducting both long-term and batch tests. After over 100 days of feeding with wastewater containing polyethylene terephthalate (PET) microplastics (0-500 µg/L), the long-term results showed that both production and reduction of N2O during denitrification were reduced, as well as the N2O production during nitrification. Accordingly, 60% reduction in N2O accumulation and 70% reduction in N2O production were observed in the denitrification and nitrification batch tests, respectively. Nevertheless, the long-term N2O emission factors under PET microplastics stress were comparable to that in the control reactor, mainly because PET microplastics led to more nitrite accumulation in anoxic period. With the aid of online N2O sensors and site-preference analysis, it was demonstrated that the heterotrophic bacteria pathway and ammonia oxidizing bacteria denitrification pathway for N2O production were negatively affected by PET microplastics, whereas a clear increase in the contribution of hydroxylamine pathway (+ 22.9%) was observed. Further investigation revealed that PET microplastics even at environmental level (i.e. 10 µg/L) significantly reshaped the BNR sludge characteristics (e.g. much larger particle size) and microbial communities (e.g. Thauera, Rhodobacte and Nitrospira) as well as the nitrogen metabolism pathways, which were chiefly responsible for the changes of N2O turnovers and N2O production pathways under the PET microplastics stress.


Subject(s)
Greenhouse Gases , Sewage , Ammonia/analysis , Bioreactors/microbiology , Denitrification , Greenhouse Gases/analysis , Hydroxylamines/analysis , Microplastics , Nitrification , Nitrites/metabolism , Nitrogen/metabolism , Nitrous Oxide/metabolism , Plastics/analysis , Polyethylene Terephthalates/analysis , Sewage/microbiology , Wastewater/analysis
3.
J Environ Manage ; 320: 115889, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35932732

ABSTRACT

Grasslands are now facing a continuously increasing supply of nitrogen (N) fertilizers, resulting in alterations in ecosystem functioning, including changes in carbon (C) and water cycling. Mowing, one of the most widely used grassland management techniques, has been shown to mitigate the negative impacts of increased N availability on species richness. However, knowledge of how N addition and mowing, alone and/or in combination, affect ecosystem-level C fluxes and water use efficiency (WN) is still limited. We experimentally manipulated N fertilization (0 and 10 g N m-2 yr-1) and mowing (once per year at the end of the growing season) following a randomized block design in a meadow steppe characterized by salinization and alkalinization in northeastern China. We found that, compared to the control plots, N addition, mowing, and their interaction increased net ecosystem CO2 exchange by 65.1%, 14.7%, and 133%, and WN by 40.7%, 18.5%, and 96.1%, respectively. Nitrogen enrichment also decreased soil pH, which resulted in greater aboveground biomass (AGB). Moreover, N addition indirectly increased AGB by inducing changes in species richness. Our results indicate that mowing enhances the positive effects of N addition on ecosystem C fluxes and WN. Therefore, appropriate grassland management practices are essential to improve ecosystem C sequestration, WN, and mitigate future species diversity declines due to ecosystem eutrophication.


Subject(s)
Ecosystem , Nitrogen , Carbon/analysis , China , Grassland , Nitrogen/analysis , Soil/chemistry , Water/analysis
4.
Front Microbiol ; 13: 961969, 2022.
Article in English | MEDLINE | ID: mdl-36003936

ABSTRACT

Nitrous oxide (N2O) is one of the most important greenhouse gases contributing to global climate warming. Recently, studies have shown that arbuscular mycorrhizal fungi (AMF) could reduce N2O emissions in terrestrial ecosystems; however, the microbial mechanisms of how AMF reduces N2O emissions under climate change are still not well understood. We tested the influence of AMF on N2O emissions by setting up a gradient of precipitation intensity (+50%, +30%, ambient (0%), -30%, -50%, and -70%) and manipulating the presence or exclusion of AMF hyphae in a semiarid grassland located in northeast China. Our results showed that N2O fluxes dramatically declined with the decrease in precipitation gradient during the peak growing season (June-August) in both 2019 and 2020. There was a significantly positive correlation between soil water content and N2O fluxes. Interestingly, N2O fluxes significantly decreased when AMF were present compared to when they were absent under all precipitation conditions. The contribution of AMF to mitigate N2O emission increased gradually with decreasing precipitation magnitudes, but no contribution in the severe drought (-70%). AMF significantly reduced the soil's available nitrogen concentration and altered the composition of the soil bacteria community including those associated with N2O production. Hyphal length density was negatively correlated with the copy numbers of key genes for N2O production (nirK and nirS) and positively correlated with the copy numbers of key genes for N2O consumption (nosZ). Our results highlight that AMF would reduce the soil N2O emission under precipitation variability in a temperate grassland except for extreme drought.

5.
Sci Total Environ ; 806(Pt 3): 151321, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34743877

ABSTRACT

As a novel and sustainable technology, membrane-aerated biofilm reactors (MABR) performing simultaneous nitrification and denitrification face the challenge of undesirable nitrous oxide (N2O) emission. Thereby, a comprehensive analysis of N2O turnover pathways and the affecting parameters in MABR are demanded for N2O mitigation strategies. In this work, a mathematical model describing three N2O turnovers pathways was studied to uncover the underlying mechanisms and the impacts of operational conditions on N2O turnovers in MABR system performing simultaneous nitrification and denitrification. The modeling results demonstrate that higher oxygen surface loading, longer hydraulic retention time (HRT) and lower influent chemical oxygen demand (COD) significantly induce higher N2O production factor (0.18%-3.3%). N2O turnovers are mainly regulated by the hydroxylamine (NH2OH) pathway and heterotrophic bacteria (HB) denitrification, accounting for 76%-87% and 10%-21%, respectively. In contrast, the thicker biofilm (i.e., 400-600 µm) causes lower N2O production factor (<0.13%), due to the shift of N2O turnover pathways to the ammonium oxidizing bacteria (AOB) denitrification pathway (7.1%-9.3%) and HB denitrification (90.7%-92.9%). Meanwhile, the result of in-biofilm N2O conversion rates shows that the NH2OH pathway and HB denitrification become the predominant N2O production pathway at the inner zone (0-160 µm) and the outer zone (290-350 µm) of the biofilm in MABR, respectively. The biofilm thickness at 160-280 µm can thus be regarded as an optimal zone to reduce N2O production in MABR, due to more electrons preferentially used for N2O reduction. The relatively low N2O production factor (<0.5%) together with >80% total nitrogen (TN) removal in MABR can be achieved by controlling the oxygen surface loading (1.821-3.641 g/m2/d) and influent COD concentrations (285-500 mg/L) within a certain range.


Subject(s)
Nitrification , Nitrous Oxide , Biofilms , Bioreactors , Denitrification
6.
Front Plant Sci ; 13: 1071511, 2022.
Article in English | MEDLINE | ID: mdl-36726673

ABSTRACT

In the context of global change, the frequency of precipitation pulses is expected to decrease while nitrogen (N) addition is expected to increase, which will have a crucial effect on soil C cycling processes as well as methane (CH4) fluxes. The interactive effects of precipitation pulses and N addition on ecosystem CH4 fluxes, however, remain largely unknown in grassland. In this study, a series of precipitation pulses (0, 5, 10, 20, and 50 mm) and long-term N addition (0 and 10 g N m-2 yr-1, 10 years) was simulated to investigate their effects on CH4 fluxes in a semi-arid grassland. The results showed that large precipitation pulses (10 mm, 20 mm, and 50 mm) had a negative pulsing effect on CH4 fluxes and relatively decreased the peak CH4 fluxes by 203-362% compared with 0 mm precipitation pulse. The large precipitation pulses significantly inhibited CH4 absorption and decreased the cumulative CH4 fluxes by 68-88%, but small precipitation pulses (5 mm) did not significantly alter it. For the first time, we found that precipitation pulse size increased cumulative CH4 fluxes quadratically in both control and N addition treatments. The increased soil moisture caused by precipitation pulses inhibited CH4 absorption by suppressing CH4 uptake and promoting CH4 release. Nitrogen addition significantly decreased the absorption of CH4 by increasing NH4 +-N content and NO3 --N content and increased the production of CH4 by increasing aboveground biomass, ultimately suppressing CH4 uptake. Surprisingly, precipitation pulses and N addition did not interact to affect CH4 uptake because precipitation pulses and N addition had an offset effect on pH and affected CH4 fluxes through different pathways. In summary, precipitation pulses and N addition were able to suppress the absorption of CH4 from the atmosphere by soil, reducing the CH4 sink capacity of grassland ecosystems.

7.
Nanomaterials (Basel) ; 11(10)2021 Sep 25.
Article in English | MEDLINE | ID: mdl-34684940

ABSTRACT

2D MXenes have been found to be one of the most promising catalysts for hydrogen evolution reaction (HER) due to their excellent electronic conductivity, hydrophilic nature, porosity and stability. Nonmetallic (NM) element doping is an effective approach to enhance the HER catalytic performance. By using the density functional theory (DFT) method, we researched the effect of nonmetallic doping (different element types, variable doping concentrations) and optimal hydrogen absorption concentration on the surface of NM-Ti3C2O2 for HER catalytic activity and stability. The calculation results show that doping nonmetallic elements can improve their HER catalytic properties; the P element dopants catalyst especially exhibits remarkable HER performance (∆GH = 0.008 eV when the P element doping concentration is 100% and the hydrogen absorption is 75%). The origin mechanism of the regulation of doping on stability and catalytic activity was analyzed by electronic structures. The results of this work proved that by controlling the doping elements and their concentrations we can tune the catalytic activity, which will accelerate the further research of HER catalysts.

8.
Sci Total Environ ; 730: 139018, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32413601

ABSTRACT

Certain levels of sludge flocs would always coexist in granule-based reactors due to the biomass detachment from granules. Such inevitable coexistence could affect both total nitrogen (TN) removal and nitrous oxide (N2O) production in autotrophic nitrogen removal systems. This work utilized a mathematical approach to systematically study the influence of the coexisting sludge flocs on TN removal and N2O production in a granular nitritation-anaerobic ammonium oxidation (Anammox) process for the first time, based on a 2-pathway N2O production model concept. The modelling results reveal that the highest TN removal efficiency decreases from ca. 87-88% to ca. 41-49% as the fraction of sludge flocs in the system increases from 10% to 40%, while the N2O production rate gradually increases with such increase. Meanwhile, both bulk dissolved oxygen (DO, 0.05-0.3 mg/L) and the size of granule (200-400 µm) could also influence the TN removal efficiency and N2O production. As the fraction of sludge flocs increases from 10% to 40%, the contribution of granular biomass to total N2O production is reduced due to increase of N2O-producing ammonia-oxidizing bacteria (AOB) in the sludge flocs, and the increase of granule size could intensify such decrease. In addition, the hydroxylamine oxidation pathway dominates the nitrifier denitrification pathway in both granules and sludge flocs under various testing conditions, whereas the increasing contribution of the latter would occur at a certain DO range, higher fraction of sludge flocs and smaller granule size. These results disclose an important influence of the coexisting sludge flocs on the performance of granular nitritation-Anammox systems.


Subject(s)
Sewage , Bioreactors , Denitrification , Nitrogen , Nitrous Oxide , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...