Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
J Ethnopharmacol ; : 118461, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38908494

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Excessive fat accumulation, biological clock dysregulation , viral infections, and sustained inflammatory responses can lead to liver inflammation, fibrosis, and cancer, thus promoting the development of chronic liver disease. A comprehensive understanding of the etiological factors leading to chronic liver disease and the intrinsic mechanisms influencing its onset and progression can aid in identifying potential targets for targeted therapy. Mitochondria, as key organelles that maintain the metabolic homeostasis of the liver, provide an important foundation for exploring therapeutic targets for chronic liver disease. Recent studies have shown that active ingredients in herbal medicines and their natural products can modulate chronic liver disease by influencing the structure and function of mitochondria. Therefore, studying how Chinese herbs target mitochondrial structure and function to treat chronic liver diseases is of great significance. AIM OF THE STUDY: Investigating the prospects of herbal medicine the Lens of chronic liver disease based on mitochondrial structure and function. MATERIALS AND METHODS: A computerized search of PubMed was conducted using the keywords "mitochondrial structure", "mitochondrial function", "mitochondria and chronic liver disease", "botanicals, mitochondria and chronic liver disease".Data from the Web of Science and Science Direct databases were also included. The research findings regarding herbal medicines targeting mitochondrial structure and function for the treatment of chronic liver disease are summarized. RESULTS: A computerized search of PubMed using the keywords "mitochondrial structure", "mitochondrial function", "mitochondria and chronic liver disease", "phytopharmaceuticals, mitochondria, and chronic liver disease", as well as the Web of Science and Science Direct databases was conducted to summarize information on studies of mitochondrial structure- and function-based Chinese herbal medicines for the treatment of chronic liver disease and to suggest that the effects of herbal medicines on mitochondrial division and fusion.The study suggested that there is much room for research on the influence of Chinese herbs on mitochondrial division and fusion. CONCLUSIONS: Targeting mitochondrial structure and function is crucial for herbal medicine to combat chronic liver disease.

2.
World J Hepatol ; 16(4): 494-505, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38689744

ABSTRACT

The endoplasmic reticulum (ER) is connected to mitochondria through mitochondria-associated ER membranes (MAMs). MAMs provide a framework for crosstalk between the ER and mitochondria, playing a crucial role in regulating cellular calcium balance, lipid metabolism, and cell death. Dysregulation of MAMs is involved in the development of chronic liver disease (CLD). In CLD, changes in MAMs structure and function occur due to factors such as cellular stress, inflammation, and oxidative stress, leading to abnormal interactions between mitochondria and the ER, resulting in liver cell injury, fibrosis, and impaired liver function. Traditional Chinese medicine has shown some research progress in regulating MAMs signaling and treating CLD. This paper reviews the literature on the association between mitochondria and the ER, as well as the intervention of traditional Chinese medicine in regulating CLD.

3.
Curr Med Chem ; 31(19): 2821-2837, 2024.
Article in English | MEDLINE | ID: mdl-38351696

ABSTRACT

INTRODUCTION: Senescence of activated hepatic stellate cells (HSC) reduces extracellular matrix expression to reverse liver fibrosis. Ferroptosis is closely related to cellular senescence, but its regulatory mechanisms need to be further investigated. The iron ions weakly bound to ferritin in the cell are called labile iron pool (LIP), and together with ferritin, they maintain cellular iron homeostasis and regulate the cell's sensitivity to ferroptosis. METHODS: We used lipopolysaccharide (LPS) to construct a pathological model group and divided the hepatic stellate cells into a blank group, a model group, and a curcumol 12.5 mg/L group, a curcumol 25 mg/L group, and a curcumol 50 mg/L group. HIF-1α-NCOA4- FTH1 signalling axis, ferroptosis and cellular senescence were detected by various cellular molecular biology experiments. RESULT: We found that curcumol could induce hepatic stellate cell senescence by promoting iron death in hepatic stellate cells. Curcumol induced massive deposition of iron ions in hepatic stellate cells by activating the HIF-1α-NCOA4-FTH1 signalling axis, which further led to iron overload and lipid peroxidation-induced ferroptosis. Interestingly, our knockdown of HIF-1α rescued curcumol-induced LIP and iron deposition in hepatic stellate cells, suggesting that HIF-1α is a key target of curcumol in regulating iron metabolism and ferroptosis. We were able to rescue curcumol-induced hepatic stellate cell senescence when we reduced LIP and iron ion deposition using iron chelators. CONCLUSION: Overall, curcumol induces ferroptosis and cellular senescence by increasing HIF-1α expression and increasing NCOA4 interaction with FTH1, leading to massive deposition of LIP and iron ions, which may be the molecular biological mechanism of its anti-liver fibrosis.


Subject(s)
Cellular Senescence , Ferroptosis , Hepatic Stellate Cells , Hypoxia-Inducible Factor 1, alpha Subunit , Liver Cirrhosis , Sesquiterpenes , Signal Transduction , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Ferroptosis/drug effects , Cellular Senescence/drug effects , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Signal Transduction/drug effects , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Humans , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Nuclear Receptor Coactivators/metabolism , Lipopolysaccharides/pharmacology , Cells, Cultured , Ferritins , Oxidoreductases
4.
Aging (Albany NY) ; 15(23): 14473-14505, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38054830

ABSTRACT

Cellular senescence plays a very important role in the ageing of organisms and age-related diseases that increase with age, a process that involves physiological, structural, biochemical and molecular changes in cells. In recent years, it has been found that the active ingredients of herbs and their natural products can prevent and control cellular senescence by affecting telomerase activity, oxidative stress response, autophagy, mitochondrial disorders, DNA damage, inflammatory response, metabolism, intestinal flora, and other factors. In this paper, we review the research information on the prevention and control of cellular senescence in Chinese herbal medicine through computer searches of PubMed, Web of Science, Science Direct and CNKI databases.


Subject(s)
Drugs, Chinese Herbal , Gastrointestinal Microbiome , Drugs, Chinese Herbal/chemistry , Cellular Senescence , Oxidative Stress
5.
Sheng Li Xue Bao ; 75(4): 555-568, 2023 Aug 25.
Article in Chinese | MEDLINE | ID: mdl-37583043

ABSTRACT

The development of chronic liver disease can be promoted by excessive fat accumulation, dysbiosis, viral infections and persistent inflammatory responses, which can lead to liver inflammation, fibrosis and carcinogenesis. An in-depth understanding of the etiology leading to chronic liver disease and the underlying mechanisms influencing its development can help identify potential therapeutic targets for targeted treatment. Orphan nuclear receptors (ONRs) are receptors that have no corresponding endogenous ligands to bind to them. The study of these ONRs and their biological properties has facilitated the development of synthetic ligands, which are important for investigating the effective targets for the treatment of a wide range of diseases. In recent years, it has been found that ONRs are essential for maintaining normal liver function and their dysfunction can affect a variety of liver diseases. ONRs can influence pathophysiological activities such as liver lipid metabolism, inflammatory response and cancer cell proliferation by regulating hormones/transcription factors and affecting the biological clock, oxidative stress, etc. This review focuses on the regulation of ONRs, mainly including retinoid related orphan nuclear receptors (RORs), pregnane X receptor (PXR), leukocyte cell derived chemotaxin 2 (LECT2), Nur77, and hepatocyte nuclear factor 4α (HNF4α), on the development of different types of chronic liver diseases in different ways, in order to provide useful references for the therapeutic strategies of chronic liver diseases based on the regulation of ONRs.


Subject(s)
Liver Diseases , Receptors, Steroid , Humans , Orphan Nuclear Receptors/metabolism , Receptors, Steroid/physiology , Ligands , Liver , Intercellular Signaling Peptides and Proteins
6.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 45(2): 185-192, 2023 Apr.
Article in Chinese | MEDLINE | ID: mdl-37157063

ABSTRACT

Objective To study the effect and mechanism of pearl hydrolysate on hepatic sinusoidal capillarization in liver fibrosis. Methods Hepatic sinusoidal endothelial cells (HSEC) and hepatic stellate cells (HSC-LX2) were incubated with Hepu pearl hydrolysate.The proliferation of HSEC and HSC-LX2 was examined by MTT colorimetry.The cell cycle and apoptosis of HSC-LX2 were measured by flow cytometry.The changes of the microstructures such as fenestra and basement membrane of HSEC were observed by transmission electron microscopy. Results The intervention with leptin increased the viability of HSC-LX2 (P=0.041),decreased the viability of HSEC (P=0.004),and caused capillarization signs such as decreased number and diameter of fenestrae and formation of continuous basement membrane.The treatment with pearl hydrolysate at different doses increased and expanded the fenestrae of HSEC (low dose:P=0.020;medium dose:P=0.028;high dose:P=0.032),disintegrated the extracellular basement membrane of HSEC (low dose:P=0.020;medium dose:P=0.028;high dose:P=0.032),decreased the viability of HSC-LX2 (low dose:P=0.018;medium dose:P=0.013;high dose:P=0.009),and induced the apoptosis of HSC-LX2 (low dose:P=0.012;medium dose:P=0.006;high dose:P=0.005).Pearl hydrolysate exerted therapeutic effect on capillarization in a dose-dependent manner (low dose:P=0.020;medium dose:P=0.028;high dose:P=0.032).Moreover,high-dose pearl hydrolysate showed stronger effect on capillarization of hepatic sinuses than colchicine (P=0.034) and salvianolic acid B (P=0.038). Conclusion Hepu pearl hydrolysate can increase the viability of HSEC,restore the area of fenestrae,disintegrate the basement membrane,and decrease the viability and induce the apoptosis of HSC-LX2,demonstrating significant pharmacological effects on the capillarization of HSEC and HSC-LX2.


Subject(s)
Endothelial Cells , Liver Cirrhosis , Humans , Endothelial Cells/metabolism , Liver/pathology
7.
Phytother Res ; 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36433866

ABSTRACT

In recent years, metabolic reprogramming in liver fibrosis has become a research hotspot in the field of liver fibrosis at home and abroad. Liver fibrosis is a pathological change caused by chronic liver injury from a variety of causes. Liver fibrosis is a common pathological feature of many chronic liver diseases such as chronic hepatitis B, non-alcoholic steatohepatitis, and autoimmune hepatitis, as well as the pathogenesis of the disease. The development of chronic liver disease into cirrhosis must go through the pathological process of liver fibrosis, in which hepatic stellate cells (HSC) play an important role. Following liver injury, HSC are activated and transdifferentiated into scar-forming myofibroblasts, which drive the trauma healing response and which rely on the deposition of collagen-rich extracellular matrix to maintain tissue integrity. This reaction will continue without strict control, which will lead to excessive accumulation of matrix and liver fibrosis. The mechanisms and clinical studies of liver fibrosis have been the focus of research in liver diseases. In recent years, several studies have revealed the mechanism of HSC metabolic reprogramming and the impact of this process on liver fibrosis, in which glucose metabolic reprogramming plays an important role in the activation of HSC, and it mainly meets the energy demand of HSC activation by upregulating glycolysis. Glycolysis is the process by which one molecule of glucose is broken down into two molecules of pyruvate and produces energy and lactate under anaerobic conditions. Various factors have been found to be involved in regulating the glycolytic process of HSC, including glucose transport, intracellular processing of glucose, exosome secretion, and lactate production, etc. Inhibition of the glycolytic process of HSC can be an effective strategy against liver fibrosis. Currently, the combined action of multiple targets and links of Chinese medicine such as turmeric, comfrey, rhubarb and scutellaria baicalensis against the mechanism of liver fibrosis can effectively improve or even reverse liver fibrosis. This paper summarizes that turmeric extract curcumin, comfrey extract comfreyin, rhubarb, Subtle yang yu yin granules, Scutellaria baicalensis extract oroxylin A and cardamom extract cardamomin affect liver fibrosis by regulating gluconeogenic reprogramming. Therefore, studying the mechanism of action of TCM in regulating liver fibrosis through reprogramming of glucose metabolism is promising to explore new methods and approaches for Chinese Medicine modernization research.

8.
FASEB J ; 36(12): e22665, 2022 12.
Article in English | MEDLINE | ID: mdl-36398583

ABSTRACT

To explore the effect of curcumol on autophagy and ferroptosis of hepatic stellate cells, and to clarify the molecular mechanism of its anti-hepatic fibrosis. In the present study, we report that curcumol promotes the death of activated HSCs and reduces the deposition of extracellular matrix. Interestingly, curcumol treatment can trigger ferroptosis to eliminate activated HSCs characterized by iron overload, lipid ROS accumulation, glutathione depletion, and lipid peroxidation. Curcumol promotes HSC autophagy, which may be the key mechanism for its induction of ferroptosis. It is worth noting that the upregulation of nuclear receptor coactivator 4 (NCOA4) may play a key molecular mechanism. NCOA4 mediates the release of iron ions and induces the occurrence of ferroptosis. Overall, curcumol promotes autophagy in hepatic stellate cells, mediates the degradation of NCOA4 and FTH1 complexes, releases iron ions, leads to iron overload, and induces ferroptosis, which may be an important mechanism for its anti-hepatic fibrosis effect.


Subject(s)
Ferroptosis , Iron Overload , Humans , Hepatic Stellate Cells/metabolism , Liver Cirrhosis/metabolism , Autophagy , Iron Overload/metabolism , Iron/metabolism
9.
Biomed Pharmacother ; 152: 113204, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35653891

ABSTRACT

OBJECTIVE: Liver fibrosis is a reversible pathological process, and its prevention and treatment hold great significance for patients with chronic liver disease. This study combined 16S rRNA analysis of gut microbiota and serum metabolomics to explore the mechanism of curcumol's effect on liver fibrosis in mice. The results clarified the relationship between the gut microbiota and metabolites in the process of liver fibrosis. MATERIALS AND METHODS: In this study, we randomly divided mice into a control group, a model group, and a curcumol treatment group to analyze the pathological changes in the liver tissue as well as the activities of the toll-like receptor 4 (TLR4)/nuclear factory kappa B (NF-κB) signaling pathway and inflammatory factors, such as tumor necrosis factor (TNF), interleukin 6 (IL-6), and IL-8. The gut microbiota were analyzed by 16 S rRNA sequencing, and serum metabolites were examined by liquid chromatography-mass spectrometry (LC-MS) metabolomic analysis. RESULTS: Molecular biological testing found that curcumol could significantly improve the pathological changes of the liver tissue and inhibit the occurrence of liver inflammation. Intestinal flora testing found that curcumol could significantly change the abundances of Veillonellaceae, Prerotella_oulorum, and Alistipes_finegoldii. Metabolomics analysis found that curcumol's antihepatic fibrosis effect may be related to its regulation of arachidonic acid metabolism. Correlation analysis suggested that curcumol regulated the abundances of Bacteroidota and Bacteroides and participated in the metabolism of Prostaglandin B2. CONCLUSIONS: When liver fibrosis occurs, the intestinal flora and metabolic network are altered. The effect of curcumol on liver fibrosis may be related to its regulation of intestinal flora and the resulting interference with metabolic pathways, thereby reducing liver inflammation.


Subject(s)
Gastrointestinal Microbiome , Animals , Humans , Inflammation , Liver Cirrhosis/drug therapy , Liver Cirrhosis/prevention & control , Metabolomics/methods , Mice , RNA, Ribosomal, 16S , Sesquiterpenes
10.
Zhongguo Zhong Yao Za Zhi ; 47(9): 2409-2418, 2022 May.
Article in Chinese | MEDLINE | ID: mdl-35531688

ABSTRACT

In recent years, liver fibrosis has become a hotspot in the field of liver diseases. MicroRNA(miRNA)-mediated Nod-like receptor pyrin domain containing 3(NLRP3) inflammasome activation is pivotal in the pathogenesis of liver fibrosis. The present study mainly discussed the role of miRNA-mediated NLRP3 inflammasome activation in the pathogenesis of liver fibrosis. Different miRNA molecules regulated liver fibrosis by mediating NLRP3 inflammasome activation, including miRNA-350-3 p(miR-350-3 p)/interleukin-6(IL-6)-mediated signal transducer and activator of transcription 3(STAT3)/c-myc signaling pathway, miR-148 a-induced autophagy and apoptosis of hepatic stellate cells via hedgehog signaling pathway, miR-155-mediated NLRP3 inflammasome by the negative feedback of the suppressor of cytokine signaling-1(SOCS-1), miR-181 a-mediated downstream NLRP3 inflammatory pathway activation through mitogen-activated protein kinase kinase(MEK)/extracellular signal-regulated kinase(ERK)/nuclear transcription factor κB(NF-κB) inflammatory pathway, miR-21-promoted expression of NF-κB and NLRP3 of RAW264.7 cells in mice by inhibiting tumor necrosis factor-α inducible protein 3(A20), and miR-20 b-promoted expression of IL-1ß and IL-18 by activating NLRP3 signaling pathway. Additionally, the anti-liver fibrosis mechanism of different active components in Chinese medicines(such as Curcumae Rhizoma, Glycyrrhizae Radix et Rhizoma, Aurantii Fructus, Polygoni Cuspidati Rhizoma et Radix, Moutan Cortex, Paeoniae Radix Alba, Epimedii Folium, and Cinnamomi Cortex) was also explored based on the anti-liver fibrosis effect of miRNA-mediated NLRP3 inflammasome activation.


Subject(s)
Inflammasomes , MicroRNAs , Animals , Hedgehog Proteins , Inflammasomes/genetics , Inflammasomes/metabolism , Interleukin-6 , Liver Cirrhosis/drug therapy , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Medicine, Chinese Traditional , Mice , MicroRNAs/genetics , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Signal Transduction
11.
Zhongguo Zhong Yao Za Zhi ; 47(3): 730-736, 2022 Feb.
Article in Chinese | MEDLINE | ID: mdl-35178956

ABSTRACT

The present study clarified the molecular mechanism of curcumol against liver fibrosis based on its effects on the autopha-gy and apoptosis of hepatic stellate cells. The hepatic stellate cells were divided into a blank control group, a transforming growth factor-ß1(TGF-ß1)(10 ng·mL~(-1)) group, and low-(12.5 mg·L~(-1)), medium-(25 mg·L~(-1)), and high-dose(50 mg·L~(-1)) curcumol groups. The effect of curcumol on the viability of hepatic stellate cells induced by TGF-ß1 was detected by the MTT assay kit. The apo-ptosis in each group was determined by flow cytometry. Real-time fluorescence-based quantitative PCR(RT-PCR) was employed for the detection of mRNA expression of α-smooth muscle actin(α-SMA), type Ⅰ collagen(collagen Ⅰ), and type Ⅲ collagen(collagen Ⅲ). Western blot was used to detect the protein expression of p62, microtubule-associated protein 1 light chain 3(LC3), beclin1, B cell lymphoma 2(Bcl-2), and Bcl-2-associated X protein(Bax). Transmission electron microscopy(TEM) was used to observe cell morphology and autophagosome formation in each group. The autophagic flux was observed after cell infection with adenovirus under double fluorescence labeling. The cell viability assay revealed that compared with the TGF-ß1 group, the curcumol groups showed significantly decreased cell viability. The apoptosis assay showed that the apoptosis rates of the curcumol groups were significantly higher than that of the TGF-ß1 group. RT-PCR indicated that the mRNA expression of α-SMA, collagenⅠ, and collagen Ⅲ in the curcumol groups was significantly lower than that of the TGF-ß1 group. Western blot showed that the expression of p62, LC3, beclin1, Bcl-2, and Bax in the curcumol groups was significantly different from that in the TGF-ß1 group. As demonstrated by TEM, compared with the TGF-ß1 group, the curcumol groups showed significantly increased autophagosomes. The detection of autophagic flow by the adenovirus under double fluorescence labeling showed that autolysosomes in the curcumol groups were significantly increased compared with those in the TGF-ß1 group. Curcumol can induce the autophagy and apoptosis of hepatic stellate cells, which may be one of its anti-liver fibrosis mechanisms.


Subject(s)
Hepatic Stellate Cells , Transforming Growth Factor beta1 , Actins/genetics , Actins/metabolism , Apoptosis , Autophagy , Humans , Liver/metabolism , Liver Cirrhosis/drug therapy , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Sesquiterpenes , Transforming Growth Factor beta1/metabolism
12.
Nat Commun ; 13(1): 935, 2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35177629

ABSTRACT

Reduction process is a key step to fabricate metal-zeolite catalysts in catalytic synthesis. However, because of the strong interaction force, metal oxides in zeolites are very difficult to be reduced. Existing reduction technologies are always energy-intensive, and inevitably cause the agglomeration of metallic particles in metal-zeolite catalysts or destroy zeolite structure in severe cases. Herein, we disclose that zeolites after ion exchange of ammonium have an interesting and unexpected self-reducing feature. It can accurately control the reduction of metal-zeolite catalysts, via in situ ammonia production from 'ammonia pools', meanwhile, restrains the growth of the size of metals. Such new and reliable ammonia pool effect is not influenced by topological structures of zeolites, and works well on reducible metals. The ammonia pool effect is ultimately attributed to an atmosphere-confined self-regulation mechanism. This methodology will significantly promote the fabrication for metal-zeolite catalysts, and further facilitate design and development of low-cost and high-activity catalysts.

13.
Chin J Integr Med ; 28(11): 992-999, 2022 Nov.
Article in English | MEDLINE | ID: mdl-34319504

ABSTRACT

OBJECTIVE: To investigate the effect of curcumol on NOD-like receptor thermoprotein domain 3 (NLRP3) inflammasomes, and analyze the mechanism underlying curcumol against liver fibrosis. METHODS: Thirty Kunming mice were divided into a control group, a model group and a curcumol group according to a random number table, 10 mice in each group. Mice were intraperitoneally injected with 40% carbon tetrachloride (CCl4:peanut oil, 2:3 preparation) at 5 mL/kg for 6 weeks, twice a week, for developing a liver fibrosis model. The mice in the control group were given the same amount of peanut oil twice a week for 6 weeks. The mice in the curcumol group were given curcumol (30 mL/kg) intragastrically, and the mice in the model and control groups were given the same amount of normal saline once a day for 6 weeks. Changes in liver structure were observed by hematoxylin and eosin (HE) and Masson staining. Liver function, liver fiber indices, and the expression of interleukin (IL)-10 and tumor necrosis factor-α (TNF-α) levels were determined by automatic biochemical analyzer and enzyme linked immunosorbent assay kit. Immunoblotting and reverse transcription-quantitative PCR (RT-qPCR) were performed to detect the expression of NLRP3 inflammasome-related molecules, TGF-ß and collagen. RESULTS: HE and Masson staining results showed that the hepatocytes of the model group were arranged irregularly with pseudo-lobular structure and a large amount of collagen deposition. The mice in the curcumol group had a significant decrease in liver function and liver fibers indices compared with the model group (P<0.05); RT-qPCR and Western blotting results reveal that, in the curcumol group, the mRNA and protein expression levels of NLRP3, IL-1 ß, Caspase 1 and gasdermin D decreased significantly compared with the model group (P<0.05); immunohistochemical results showed that in the curcumol group, the protein expression levels of NLRP3 and IL-1 ß decreased significantly compared with the model group (P<0.05). CONCLUSION: A potential anti-liver fibrosis mechanism of curcumol may be associated with the inhibition of NLRP3 inflammasomes and decreasing the downstream inflammatory response.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Mice , Inflammasomes/metabolism , Interleukin-1beta/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Proteins , Caspase 1 , Tumor Necrosis Factor-alpha , Carbon Tetrachloride , Hematoxylin , Saline Solution , Eosine Yellowish-(YS) , Peanut Oil , Liver Cirrhosis/drug therapy , RNA, Messenger/genetics , Collagen , Transforming Growth Factor beta
14.
J Ethnopharmacol ; 280: 114480, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34358654

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Curcuma is a common Chinese herbal medicine that is used in the clinical treatment of chronic liver disease. Studies have found that curcumol is the main active ingredient of curcuma and has good hepatoprotective and anti-inflammatory effects. However, there are few reports on the molecular mechanism underlying the anti-liver fibrosis effect of curcumol. AIM: To explore the effect of curcumol on liver angiogenesis, and to reveal the mechanism of curcumol against liver fibrosis. MATERIALS AND METHODS: We used liver collagenase perfusion combined with Percoll density gradient sedimentation to separate primary liver sinusoidal endothelial cells, and then applied a leptin-activated cell pathological model. The cells were divided into four treatment groups as follows: blank group, model group, curcumol group, and solafini group. MTT was used to detect the cell proliferation rate in each group, and RT-PCR and western blotting were used to detect the expressions of VEGF, AKT, eNOS, CD31, and vWF. A fluorescent probe was used to detect NO expression, and scanning electron microscopy was used to observe changes in the cell fenestration structure. Angiogenesis assays were used to observe blood vessel formation in each group. RESULTS: The results of the MTT test found that the proliferation rate of each group was higher. The results of the molecular biology tests found that curcumol inhibited the activity of the VEGF/AKT/eNOS pathway, thereby increasing fenestration of sinusoidal endothelial cells and inhibiting liver angiogenesis. These differences were statistically significant compared with the model group. CONCLUSIONS: Curcumol inhibits the activity of the VEGF/AKT/eNOS signaling pathway, regulates the structure of hepatic sinusoidal endothelial cells, and inhibits liver angiogenesis, which together may explain its anti-liver fibrosis mechanism.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Liver Cirrhosis/drug therapy , Neovascularization, Pathologic/drug therapy , Sesquiterpenes/pharmacology , Animals , Endothelial Cells/drug effects , Liver Cirrhosis/pathology , Male , Neovascularization, Pathologic/pathology , Nitric Oxide Synthase Type III/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Vascular Endothelial Growth Factor A/metabolism
15.
ACS Nano ; 15(8): 13568-13578, 2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34378905

ABSTRACT

Up to now, the member of zeolite family has expanded to more than 230. However, only little part of them have been reported as catalysts used in reactions. Discovering potential zeolites for reactions is significantly important, especially in industrial applications. A carbonylation zeolite catalyst Al-RUB-41 has special morphology and channel orientation. The 8-MR channel of Al-RUB-41 is just perpendicular to its thin sheet, making a very short mass-transfer distance along 8-MR. This specific nature endows Al-RUB-41 with efficient catalytic ability to dimethyl ether carbonylation reaction with beyond 95% methyl acetate selectivity. Compared with the most widely accepted carbonylation zeolite catalysts, Al-RUB-41 behaves a much better catalytic stability than H-MOR and a greatly enhanced catalytic activity than H-ZSM-35. A space-confined deactivation mechanism over Al-RUB-41 is proposed. By erasing the acid sites on outer surface, Al-RUB-41@SiO2 catalyst achieves a long-time and high-efficiency activity without any deactivation trend.

16.
Int J Clin Exp Pathol ; 13(11): 2820-2830, 2020.
Article in English | MEDLINE | ID: mdl-33284878

ABSTRACT

AIM: This study investigates the expression profile of circRNA in nonalcoholic steatohepatitis (NASH) cirrhosis and identifies the underlying pathogenesis of core genes of NASH cirrhosis. METHODS: The GEO 134146 dataset was obtained from GEO database. EdgeR software was used to analyze the differential expression of circRNA between NASH cirrhosis samples and normal samples, and Starbase and miRWalk databases were used to predict the targeted miRNA and mRNA. The protein-protein interaction network of these target genes was established by searching the string database of interacting genes, Cytoscape and Mcode analysis. In addition, David and Omicshare were used to analyze the functional enrichment and pathway enrichment of target genes. RESULTS: We evaluated 99 differentially expressed circRNAs, 27 of which were up-regulated, and 72 were down-regulated. A regulatory network consisting of 10 circRNAs, 30 miRNAs, and 1217 mRNAs was further constructed. The differential expression of circRNA is closely related to the functions of "target gene transcriptional regulation", "protein binding", "serine/threonine kinase", etc. The difference in circRNA is mainly related to the "MAPK" signaling pathway and the "FoxO" signaling pathway. CONCLUSIONS: This study confirmed the abnormal regulation of circRNA in NASH cirrhosis. Bioinformatic analysis showed that abnormal expression of circRNA might be related to the occurrence and development of NASH cirrhosis.

17.
Article in English | MEDLINE | ID: mdl-32595742

ABSTRACT

OBJECTIVE: To study the effect of curcumol on liver sinusoidal endothelial cells (LSECs) and to analyze the mechanism of antihepatic fibrosis. METHODS: The effects of drug intervention on cell proliferation rates were detected by MTT assay. The expression of NF-κB was detected by RT-PCR and WB. The NF-κB expression and entry into the nucleus were detected by immunofluorescence; scanning electron microscopy was used to observe the changes of LSECs fenestrae. RESULTS: MTT results showed that the interference of cell proliferation in each group was small. RT-PCR showed that the expression of NF-κB in the curcumol intervention group was significantly lower than that in the positive control group (P < 0.05). The WB detection found that, in the curcumol intervention group, the expression of pNF-κB in the NF-κB signaling pathway was significantly lower than that in the positive control group (P < 0.05). Scanning electron microscopy showed that the LSEC fenestrae were significantly improved compared with the positive control group. CONCLUSION: Curcumol may be one of the mechanisms of antihepatic fibrosis by inhibiting the activity of the NF-κB signaling pathway and increasing the fenestrae of LSECs.

18.
Phytother Res ; 34(6): 1421-1435, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31989700

ABSTRACT

Previous studies have suggested strong antifibrotic activity of curcumol in the liver; the underlying mechanisms of which, however, remain largely unknown. Aiming to investigate the role of curcumol in regulating early and advanced liver fibrosis, we designed a rat model with advanced liver fibrosis and cell model with an initial fibrotic stage. Model rats induced by CCl4 and alcohol presented advanced liver fibrosis with complete fibrous septa. The administration of curcumol (25 mg/kg or 50 mg/kg) resulted in reversal of liver fibrosis. Leptin-administrated liver sinusoidal endothelial cells presented defenestration and basement membrane components deposition, including laminin (LN) and type IV collagen (Col IV), the characteristics of capillarization by scanning electron microscopy and immunofluorescence assays. After treatment with curcumol (12.5, 25, or 50 mg/L), defenestration was restored and the levels of LN and Col IV were decreased, consistent with the rat model. Quantitative polymerase chain reaction and Western blot results revealed that increased levels of urokinase plasminogen activator (uPA)/ uPA receptor (uPAR) were observed both in vivo and in vitro, curcumol significantly reduced uPA/uPAR at both the mRNA and protein levels. Reduction of uPA/uPAR may be synergistic with matrix metallopeptidase 13 to reverse liver fibrogenesis. In conclusion, curcumol protects liver from phenotypic changes in the early and advanced fibrogenesis, possibly through uPA/uPAR pathway.


Subject(s)
Liver Cirrhosis/drug therapy , Sesquiterpenes/therapeutic use , Urokinase-Type Plasminogen Activator/drug effects , Animals , Disease Models, Animal , Down-Regulation , Female , Humans , Male , Rats , Rats, Sprague-Dawley , Sesquiterpenes/pharmacology
19.
Biomed Pharmacother ; 118: 109249, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31351428

ABSTRACT

The endoplasmic reticulum (ER) acts as a moving organelle with many important cellular functions. As the ER lacks sufficient nutrients under pathological conditions leading to uncontrolled protein synthesis, aggregation of unfolded/misfolded proteins in the ER lumen causes the unfolded protein response (UPR) to be activated. Chronic ER stress produces endogenous or exogenous damage to cells and activates UPR, which leads to impaired intracellular calcium and redox homeostasis. The UPR is capable of recognizing the accumulation of unfolded proteins in the ER. The protein response enhances the ability of the ER to fold proteins and causes apoptosis when the function of the ER fails to return to normal. In different malignancies, ER stress can effectively induce the occurrence of autophagy in cells because malignant tumor cells need to re-use their organelles to maintain growth. Autophagy simultaneously counteracts ER stress-induced ER expansion and has the effect of enhancing cell viability and non-apoptotic death. Oxidative stress also affects mitochondrial function of important proteins through protein overload. Mitochondrial reactive oxygen species (ROS) are produced by calcium-enhanced ER release. The accumulation of toxic substances in ER and mitochondria in mitochondria destroys basic organelle function. It is known that sustained ER stress can also trigger an inflammatory response through the UPR pathway. Inflammatory response is thought to be associated with tumor development. This review discusses the emerging links between UPR responses and autophagy, oxidative stress, and inflammatory response signals in ER stress, as well as the potential development of targeting this multifaceted signaling pathway in various cancers.


Subject(s)
Autophagy , Endoplasmic Reticulum Stress , Inflammation/pathology , Neoplasms/pathology , Oxidative Stress , Animals , Humans , Unfolded Protein Response
20.
Biomed Pharmacother ; 116: 108923, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31154269

ABSTRACT

AIMS: The purpose of this study was to investigate plumbagin (PL) on liver fibrosis in vitro and in vivo and to explore the underlying mechanisms. METHODS: Carbon tetrachloride (CCl4) was used to establish a rat liver fibrosis model, primary hepatic stellate cells (HSCs) were isolated from the rat liver, and fibrosis-related indicators were detected. RESULTS: The results revealed that PL significantly prevented CCl4-induced liver fibrosis, as evidenced by the attenuation of histopathological changes, the decrease of MDA and the increase of SOD and GSH-P X . In addition, PL downregulated the mRNA levels of NOX4 and procollagen I; the protein expression levels of NOX4 and p-IκB; and the transcriptional activity of NF-κB in liver fibrosis rats. Moreover, PL significantly decreased ROS expression, protein expression of α-SMA and collagen III, and activation of NF-κB and inhibited the nuclear translocation of NF-κB p65 in IL-1ß-stimulated HSCs in vitro. CONCLUSION: The results of our study indicate that PL can mitigate liver fibrosis in vitro and in vivo, which may be related to the ROS-mediated NF-кB signaling pathway.


Subject(s)
Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , NF-kappa B/metabolism , Naphthoquinones/therapeutic use , Reactive Oxygen Species/metabolism , Signal Transduction , Animals , Antioxidants/metabolism , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Collagen Type I/metabolism , Collagen Type III/metabolism , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Interleukin-1beta/metabolism , Liver Cirrhosis/pathology , Male , NADPH Oxidase 4/metabolism , NF-KappaB Inhibitor alpha/metabolism , Naphthoquinones/pharmacology , Oxidative Stress/drug effects , Phosphorylation/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Sprague-Dawley , Transcription Factor RelA/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...