Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Front Microbiol ; 13: 1018077, 2022.
Article in English | MEDLINE | ID: mdl-36299726

ABSTRACT

Soil microbes act as "players" in regulating biogeochemical cycles, whereas environmental heterogeneity drives microbial community assembly patterns and is influenced by stochastic and deterministic ecological processes. Currently, the limited understanding of soil microbial community assembly patterns and interactions under temperate forest stand differences pose a challenge in studying the soil microbial involvement during the succession from coniferous to broad-leaved forests. This study investigated the changes in soil bacterial and fungal community diversity and community structure at the regional scale and identified the pathways influencing soil microbial assembly patterns and their interactions. The results showed that broad-leaved forest cover in temperate forests significantly increased soil pH, and effectively increased soil water content, total carbon (TC), total nitrogen (TN), and total phosphorus (TP) contents. Both soil bacterial and fungal alpha diversity indices were correlated with soil physicochemical properties, especially in broad-leaved forest. The bacterial and fungal community composition of coniferous forest was dominated by deterministic process (bacteria: 69.4%; fungi: 88.9%), while the bacterial community composition of broad-leaved forest was dominated by stochastic process (77.8%) and the fungal community composition was dominated by deterministic process (52.8%). Proteobacteria, Acidobacteriota, Actinobacteriota, and Verrucomicrobiota were the dominant phyla of soil bacterial communities in temperate forests. Whereas Ascomycota, Mortierellomycota, Basidiomycota, and Rozellomycota were the dominant phyla of soil fungal communities in temperate forests. Most members of dominant phylum were regulated by soil physical and chemical properties. In addition, the succession from temperate coniferous forest to broad-leaved forest was conducive to maintaining the complex network of soil bacteria and fungi, and the top 20 degree of the major taxa in the network reflected the positive response of microbial interactions to the changes of soil nutrients during forest succession. This study not only shows the mechanism by which species differences in temperate forests of northern China affect soil microbial community assembly processes, but also further emphasizes the importance of the soil microbiome as a key ecosystem factor through co-occurrence network analysis.

2.
Appl Bionics Biomech ; 2022: 7641048, 2022.
Article in English | MEDLINE | ID: mdl-35126662

ABSTRACT

The fast advancement and deployment of sequencing technologies after the Human Genome Project have greatly increased our knowledge of the eukaryotic genome sequences. However, due to technological concerns, high-quality genomic data has been confined to a few key organisms. Moreover, our understanding of which portions of genomes make up genes and which transcript isoforms synthesize these genes is scarce. Therefore, the current study has been designed to explore the reliability of the tiger lily (Lilium lancifolium Thunb) transcriptome. The PacBio-SMRT was used for attaining the complete transcriptomic profile. We obtained a total of 815,624 CCS (Circular Consensus Sequence) reads with an average length of 1295 bp. The tiger lily transcriptome has been sequenced for the first time using third-generation long-read technology. Furthermore, unigenes (38,707), lncRNAs (6852), and TF members (768) were determined based on the transcriptome data, followed by evaluating SSRs (3319). It has also been revealed that 105 out of 128 primer pairs effectively amplified PCR products. Around 15,608 transcripts were allocated to 25 distinct KOG Clusters, and 10,706 unigenes were grouped into 52 functional categories in the annotated transcripts. Until now, no tiger lily lncRNAs have been discovered. Results of this study may serve as an extensive set of reference transcripts and help us learn more about the transcriptomes of tiger lilies and pave the path for further research.

3.
Mitochondrial DNA B Resour ; 5(3): 2744-2745, 2020 Jul 11.
Article in English | MEDLINE | ID: mdl-33457931

ABSTRACT

Cucumis melo L. var. Agrestis Naud chloroplast genome sequence was first reported. The size of the chloroplast genome is 156,016 bp in length, including a large single copy region (LSC) of 86,334 bp, a small single copy region (SSC) of 18,088 bp, and a pair of inverted repeat (IRa and IRb) regions with 25,797 bp. Cucumis melo L. var. Agrestis Naud chloroplast genome encodes 133 genes, including 88 mRNA genes, 37 tRNA genes, and eight rRNA genes. Phylogenetic analysis with the reported chloroplast sequences shows that Cucumis melo L. var. Agrestis Naud was closely related to Cucumis melo subsp. melo.

4.
Funct Plant Biol ; 46(8): 766-776, 2019 07.
Article in English | MEDLINE | ID: mdl-31046902

ABSTRACT

The chloroplast is an essential photosynthetic apparatus that is more sensitive to low temperatures than other organelles. Sigma factors were revealed regulating specific gene expression for maintaining photosynthetic efficiency and adapting to physiological and environmental conditions. However, the regulatory mechanisms of SIG genes supporting chloroplast development under low temperature in rice have not yet been reported. Here, we uncovered the essential role of OsSIG2A in rice chloroplast development at low temperatures by a newly reported thermo-sensitive chlorophyll deficient 12 (tcd12) mutant, which exhibited albino leaves with decreased chlorophyll content and malformed chloroplasts at seedling stage under low temperature. OsSIG2A is a typical chloroplast-localised RNA polymerase sigma factor, and constitutively expresses in different rice tissues, especially for young leaves and stems. Moreover, the transcription level of both PEP- and NEP- dependent genes, which are necessary for chloroplast development at early leaf development stage, was greatly affected in the tcd12 mutant under low temperature. Taken together, our findings indicate that OsSIG2A is required for early chloroplast differentiation under low temperatures by regulating plastid genes expression.


Subject(s)
Oryza , Chloroplasts , Plant Proteins , Plastids , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...