Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 669: 383-392, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38718591

ABSTRACT

Phase junctions exhibit great potential in photocatalytic energy conversion, yet the narrow light response region and inefficient charge transfer limit their photocatalytic performance. Herein, an anatase/rutile phase junction modified by plasmonic TiN and oxygen vacancies (TiN/(A-R-TiO2-Ov)) is prepared through an in-situ thermal transformation from TiN for efficient photothermal-assisted photocatalytic hydrogen production for the first time. The content of TiN, oxygen vacancies, and phase components in TiN/(A-R-TiO2-Ov) hybrids can be well-adjusted by tuning the heating time. The as-prepared photocatalysts display a large specific area and wide light absorption due to the synergistic effect of plasmonic excitation, oxygen vacancies, and bandgap excitations. Meanwhile, the multi-interfaces between TiN, anatase, and rutile provide built-in electric fields for efficient separation of photoinduced carriers and hot electron injection via ohmic contact and type-Ⅱ band arrangement. As a result, the TiN/(A-R-TiO2-Ov) photocatalyst shows an excellent photocatalytic hydrogen generation rate of 15.07 mmol/g/h, which is 20.6 times higher than that of titanium dioxide P25. Moreover, temperature-dependent photocatalytic tests reveal that the excellent photothermal conversion caused by plasmonic heating and crystal lattice vibrations in TiN/(A-R-TiO2-Ov) has about 25 % enhancement in photocatalysis (18.84 mmol/g/h). This work provides new inspiration for developing high-performance photocatalysts by optimizing charge transfer and photothermal conversion.

2.
Nano Res ; 15(10): 9461-9469, 2022.
Article in English | MEDLINE | ID: mdl-35818567

ABSTRACT

Colloidal metal nanocrystals (NCs) show great potential in plasmon-enhanced spectroscopy owing to their attractive and structure-depended plasmonic properties. Herein, unique Au rod-cup NCs, where Au nanocups are embedded on the one or two ends of Au nanorods (NRs), are successfully prepared for the first time via a controllable wet-chemistry strategy. The Au rod-cup NCs possess multiple plasmon modes including transverse and longitudinal electric dipole (TED and LED), magnetic dipole (MD), and toroidal dipole (TD) modulated LED resonances, producing large extinction cross-section and huge near-field enhancements for plasmon-enhanced spectroscopy. Particularly, Au rod-cup NCs with two embedded cups show excellent surface-enhanced Raman spectroscopy (SERS) performance than Au NRs (75.6-fold enhancement excited at 633 nm) on detecting crystal violet owing to the strong electromagnetic hotspots synergistically induced by MD, LED, and TED-based plasmon coupling between Au cup and rod. Moreover, the strong TD-modulated dipole-dipole double-resonance and MD modes in Au rod-cup NCs bring a 37.3-fold enhancement of second-harmonic generation intensity compared with bare Au NRs, because they can efficiently harvest photoenergy at fundamental frequency and generate large near-field enhancements at second-harmonic wavelength. These findings provide a strategy for designing optical nanoantennas for plasmon-enhanced applications based on multiple plasmon modes. Electronic Supplementary Material: Supplementary material (SEM image of Au rod-one-cup NCs; TEM image of Au/PbS hybrids; SEM image of Au rod-two-cup NCs; low-amplification SEM image of Au rod-two-cup NCs; experimental extinction and calculated electric field distributions of Au NR excited at different wavelengths; calculated absorption and scattering spectra of Au rod-one-cup NCs; schematic illustration of the cut plane and the corresponding magnetic field distribution under L3 excitation; Raman spectra of CV (10-6 M) adsorbed on Au rod-cup NCs with different cup sizes; calculated magnetic field distribution of Au rodcup NCs excited at 532 and 633 nm; calculated electric field distributions of Au rod-one-cup NC excited at 600 nm along TE and LE; the models of Au rod-cup NCs used in the simulations) is available in the online version of this article at 10.1007/s12274-022-4562-5.

3.
ACS Omega ; 6(42): 28347-28355, 2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34723031

ABSTRACT

Metal/semiconductor hybrids show potential application in fields of surface-enhanced Raman spectroscopy (SERS) and photocatalysis due to their excellent light absorption, electric field, and charge-transfer properties. Herein, a WO3-Au metal/semiconductor hybrid, which was a WO3 nanobrick decorated with Au nanoparticles, was prepared via a facile hydrothermal method. The WO3-Au hybrids show excellent visible light absorption, strong plasmon coupling, high-performance SERS, and good photocatalytic activity. In particular, on sensing rhodamine B (RhB) under 532 nm excitation, bare WO3 nanobricks have a Raman enhancement factor of 2.0 × 106 and a limit of detection of 10-8 M due to the charger-transfer property and abundant oxygen vacancies. WO3-Au metal/semiconductor hybrids display a largely improved Raman enhancement factor compared to pure Au and WO3 components owing to the synergistic effect of electromagnetic enhancement and charge transfer. The Raman enhancement factor and limit of detection are further improved, reaching 5.3 × 108 and 10-12 M, respectively, on increasing the content of Au to 2.1 wt %, owing to the strong plasmon coupling between the Au nanoparticles. Additionally, the WO3-Au hybrids also exhibit excellent photocatalytic activity toward degradation of RhB under visible light irradiation. WO3-Au (2.1 wt %) possesses the fastest photocatalytic rate, which is 6.1 and 2.0 times that of pure WO3 nanobricks and commercial P25, respectively. The enhanced photocatalytic activity is attributed to the strong plasmon coupling and the efficient charge transfer between Au and WO3 nanobricks. The as-prepared materials show great potential in detecting and degrading pollutants in environmental treatment.

4.
Nanomaterials (Basel) ; 11(9)2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34578492

ABSTRACT

Flower-like metallic nanocrystals have shown great potential in the fields of nanophononics and energy conversion owing to their unique optical properties and particular structures. Herein, colloid Au nanoflowers with different numbers of petals were prepared by a steerable template process. The structure-adjustable Au nanoflowers possessed double plasmon resonances, tunable electric fields, and greatly enhanced SERS and photocatalytic activity. In the extinction spectra, Au nanoflowers had a strong electric dipole resonance located around 530 to 550 nm. Meanwhile, a longitudinal plasmon resonance (730~760 nm) was obtained when the number of petals of Au nanoflowers increased to two or more. Numerical simulations verified that the strong electric fields of Au nanoflowers were located at the interface between the Au nanosphere and Au nanopetals, caused by the strong plasmon coupling. They could be further tuned by adding more Au nanopetals. Meanwhile, much stronger electric fields of Au nanoflowers with two or more petals were identified under longitudinal plasmon excitation. With these characteristics, Au nanoflowers showed excellent SERS and photocatalytic performances, which were highly dependent on the number of petals. Four-petal Au nanoflowers possessed the highest SERS activity on detecting Rhodamine B (excited both at 532 and 785 nm) and the strongest photocatalytic activity toward photodegrading methylene blue under visible light irradiation, caused by the strong multi-interfacial plasmon coupling and longitudinal plasmon resonance.

5.
ACS Appl Mater Interfaces ; 13(37): 44440-44450, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34499478

ABSTRACT

A phase junction fabricated by two crystalline phases of the same semiconductor is a promising photocatalyst with efficient charge transfer and separation. However, the weak light absorption and uncontrolled phase junction interface limit the generation and separation of photogenerated carriers. Herein, a two-dimensional (2D)/2D phase junction was prepared by growing orthorhombic WO3 ultrathin nanosheets on hexagonal WO3 nanosheets through a one-step hydrothermal method. The orthorhombic/hexagonal WO3 possesses large-area phase junction interfaces, rich reactive sites, and built-in electric field, which greatly accelerate the photogenerated charge separation and transfer. Thus, the orthorhombic/hexagonal WO3 displayed excellent photocatalytic hydrogen generation activity from water splitting under light irradiation (λ > 420 nm), which is 2.16 and 2.85 times those of orthorhombic and hexagonal WO3 phase components. Furthermore, Au nanoparticles (about 4.5 nm in diameter) were deposited on both orthorhombic and hexagonal WO3 nanosheets to form a plasmon-mediated phase junction. The hybrids exhibit prominent visible-light absorption and efficient charge transfer, leading to a further improved photocatalytic hydrogen generation activity. Further characterization studies demonstrate that superior photoactivity arises from the excellent visible-light-harvesting ability, appropriate band structure, and high-efficiency and multichannel transferring processes of photogenerated carriers.

6.
Sci Rep ; 9(1): 4001, 2019 03 08.
Article in English | MEDLINE | ID: mdl-30850630

ABSTRACT

Evaluation of precipitation and nitrogen (N) deposition in desert ecosystems helps to elucidate the reaction of desert ecosystems to future environmental changes. An in-situ field experiment was established to examine the influence of a long-term enhanced precipitation and N deposition on the photosynthetic traits and physiological characteristics of Haloxylon ammodendron in the Gurbantunggut Desert, northwest China, throughout the growing season in 2014-2016. Results showed a significant interaction between precipitation and N applications. Increased precipitation and N deposition and their coupling could significantly improve photosynthetic capacity, alter the variability in amplitude of water potential and change the content of substances regulating osmotic pressure in H. ammodendron. According to the comprehensive evaluation of H. ammodendron's adaptability using six different water and N coupling models, a combination of a 30% increase in precipitation and a 30 kg N ha-1 yr-1 addition in nitrogen deposition, or the addition of N at a concentration of 60 kg N ha-1 yr-1 with natural precipitation were beneficial to H. ammodendron growth and development. Hence, changes in the future global environment can be anticipated to be beneficial to H. ammodendron growth.


Subject(s)
Amaranthaceae/growth & development , Nitrogen/chemistry , China , Desert Climate , Ecosystem , Photosynthesis/physiology , Seasons , Soil/chemistry , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...