Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 184
Filter
1.
Front Microbiol ; 15: 1389242, 2024.
Article in English | MEDLINE | ID: mdl-38827151

ABSTRACT

The antibiotics are generally regarded as the first choice approach to treat dairy mastitis, targeting the public health problems associated with the food safety and the emergence of antibioticresistant bacteria. The objective of the study was to evaluate the antibacterial efficacy of ursolic acid (UA) when used to treat Staphylococcus aureus and other isolates associated with bovine mastitis and to clarify the mechanistic basis for these effects. The bacteriostatic properties of UA extracted from Rosmarinus officinalis L. at four different purity levels were assessed by calculating minimum inhibitory concentration (MIC) values, while the synergistic effects of combining 98% UA with antibiotics were evaluated by measuring the fractional inhibitory concentration index (FICI). Changes in biofilm formation and the growth curves of the clinical isolates were assessed to clarify the bacteriostatic effect of UA. Furthermore, the cell wall integrity, protein synthesis, and reactive oxygen species (ROS) production were assessed to determine the antibacterial mechanism of UA treatment. Ultimately, UA was revealed to exhibit robust activity against Gram-positive bacteria including S. aureus (ATCC 25923), Streptococcus dysgalactiae (ATCC27957), Streptococcus agalactiae (ATCC13813), Enterococcus faecalis (ATCC29212), and Streptococcus mutans (ATCC25175). However, it did not affect Escherichia coli (ATCC 25922). The MIC values of UA preparations that were 98, 50, 30, and 10% pure against S. aureus were 39, 312, 625, and 625 µg/mL, respectively, whereas the corresponding MIC for E. coli was >5,000 µg/mL. The minimum bactericidal concentrations of 98% UA when used to treat three clinical S. aureus isolates (S4, S5, and S6) were 78, 78, and 156 µg/mL, respectively. Levels of biofilm formation for clinical S. aureus isolates decreased with increasing 98% UA concentrations. Above the MIC dose, UA treatment resulted in the dissolution of bacterial cell walls and membranes, with cells becoming irregularly shaped and exhibiting markedly impaired intracellular protein synthesis. S. aureus treated with 98% UA was able to rapidly promote intracellular ROS biogenesis. Together, these data highlight the promising utility of UA as a compound that can be used together with other antibiotics for the treatment of infections caused by S. aureus.

2.
Nucleic Acids Res ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783035

ABSTRACT

High-throughput screening rapidly tests an extensive array of chemical compounds to identify hit compounds for specific biological targets in drug discovery. However, false-positive results disrupt hit compound screening, leading to wastage of time and resources. To address this, we propose ChemFH, an integrated online platform facilitating rapid virtual evaluation of potential false positives, including colloidal aggregators, spectroscopic interference compounds, firefly luciferase inhibitors, chemical reactive compounds, promiscuous compounds, and other assay interferences. By leveraging a dataset containing 823 391 compounds, we constructed high-quality prediction models using multi-task directed message-passing network (DMPNN) architectures combining uncertainty estimation, yielding an average AUC value of 0.91. Furthermore, ChemFH incorporated 1441 representative alert substructures derived from the collected data and ten commonly used frequent hitter screening rules. ChemFH was validated with an external set of 75 compounds. Subsequently, the virtual screening capability of ChemFH was successfully confirmed through its application to five virtual screening libraries. Furthermore, ChemFH underwent additional validation on two natural products and FDA-approved drugs, yielding reliable and accurate results. ChemFH is a comprehensive, reliable, and computationally efficient screening pipeline that facilitates the identification of true positive results in assays, contributing to enhanced efficiency and success rates in drug discovery. ChemFH is freely available via https://chemfh.scbdd.com/.

3.
Nucleic Acids Res ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38572755

ABSTRACT

ADMETlab 3.0 is the second updated version of the web server that provides a comprehensive and efficient platform for evaluating ADMET-related parameters as well as physicochemical properties and medicinal chemistry characteristics involved in the drug discovery process. This new release addresses the limitations of the previous version and offers broader coverage, improved performance, API functionality, and decision support. For supporting data and endpoints, this version includes 119 features, an increase of 31 compared to the previous version. The updated number of entries is 1.5 times larger than the previous version with over 400 000 entries. ADMETlab 3.0 incorporates a multi-task DMPNN architecture coupled with molecular descriptors, a method that not only guaranteed calculation speed for each endpoint simultaneously, but also achieved a superior performance in terms of accuracy and robustness. In addition, an API has been introduced to meet the growing demand for programmatic access to large amounts of data in ADMETlab 3.0. Moreover, this version includes uncertainty estimates in the prediction results, aiding in the confident selection of candidate compounds for further studies and experiments. ADMETlab 3.0 is publicly for access without the need for registration at: https://admetlab3.scbdd.com.

4.
Aging (Albany NY) ; 16(8): 7217-7248, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38656880

ABSTRACT

AIM: In 2019, to examine the functions of METTL3 in liver and underlying mechanisms, we generated mice with hepatocyte-specific METTL3 homozygous knockout (METTL3Δhep) by simultaneously crossing METTL3fl/fl mice with Alb-iCre mice (GPT) or Alb-Cre mice (JAX), respectively. In this study, we explored the potential reasons why hepatocyte-specific METTL3 homozygous disruption by Alb-iCre mice (GPT), but not by Alb-Cre mice (JAX), resulted in acute liver failure (ALF) and then postnatal lethality. MAIN METHODS: Mice with hepatocyte-specific METTL3 knockout were generated by simultaneously crossing METTL3fl/fl mice with Alb-iCre mice (GPT; Strain No. T003814) purchased from the GemPharmatech Co., Ltd., (Nanjing, China) or with Alb-Cre mice (JAX; Strain No. 003574) obtained from The Jackson Laboratory, followed by combined-phenotype analysis. The publicly available RNA-sequencing data deposited in the NCBI Gene Expression Omnibus (GEO) database under the accession No.: GSE198512 (postnatal lethality), GSE197800 (postnatal survival) and GSE176113 (postnatal survival) were mined to explore the potential reasons why hepatocyte-specific METTL3 homozygous deletion by Alb-iCre mice (GPT), but not by Alb-Cre mice (JAX), leads to ALF and then postnatal lethality. KEY FINDINGS: Firstly, we observed that hepatocyte-specific METTL3 homozygous deficiency by Alb-iCre mice (GPT) or by Alb-Cre mice (JAX) caused liver injury, abnormal lipid accumulation and apoptosis. Secondly, we are surprised to find that hepatocyte-specific METTL3 homozygous deletion by Alb-iCre mice (GPT), but not by Alb-Cre mice (JAX), led to ALF and then postnatal lethality. Our findings clearly demonstrated that METTL3Δhep mice (GPT), which are about to die, exhibited the severe destruction of liver histological structure, suggesting that METTL3Δhep mice (GPT) nearly lose normal liver function, which subsequently contributes to ALF, followed by postnatal lethality. Finally, we unexpectedly found that as the compensatory growth responses of hepatocytes to liver injury induced by METTL3Δhep (GPT), the proliferation of METTL3Δhep hepatocytes (GPT), unlike METTL3Δhep hepatocytes (JAX), was not evidenced by the significant increase of Ki67-positive hepatocytes, not accompanied by upregulation of cell-cycle-related genes. Moreover, GO analysis revealed that upregulated genes in METTL3Δhep livers (GPT), unlike METTL3Δhep livers (JAX), are not functionally enriched in terms associated with cell cycle, cell division, mitosis, microtubule cytoskeleton organization, spindle organization, chromatin segregation and organization, and nuclear division, consistent with the loss of compensatory proliferation of METTL3Δhep hepatocytes (GPT) observed in vivo. Thus, obviously, the loss of the compensatory growth capacity of METTL3Δhep hepatocytes (GPT) in response to liver injury might contribute to, at least partially, ALF and subsequently postnatal lethality of METTL3Δhep mice (GPT). SIGNIFICANCE: These findings from this study and other labs provide strong evidence that these phenotypes (i.e., ALF and postnatal lethality) of METTL3Δhep mice (GPT) might be not the real functions of METTL3, and closely related with Alb-iCre mice (GPT), suggesting that we should remind researchers to use Alb-iCre mice (GPT) with caution to knockout gene in hepatocytes in vivo.


Subject(s)
Hepatocytes , Liver Failure, Acute , Methyltransferases , Animals , Mice , Hepatocytes/metabolism , Hepatocytes/pathology , Liver/pathology , Liver/metabolism , Liver Failure, Acute/genetics , Liver Failure, Acute/pathology , Liver Failure, Acute/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , Mice, Knockout
5.
Water Res ; 255: 121443, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38492313

ABSTRACT

Microplastic (MP) pollution is a significant worldwide environmental and health challenge. Municipal solid waste (MSW) can be an important source of MPs in the environment if treated and disposed of inappropriately, causing potential ecological risks. MSW treatment and disposal methods have been gradually shifting from landfilling/dumping to more sustainable approaches, such as incineration or composting. However, previous studies on MP characteristics in different MSW treatment and disposal systems have mainly focused either on landfills/dumpsites or composts. The lack of knowledge of multiple MSW treatment and disposal systems makes it difficult to ensure effective MP pollution control during MSW treatment and disposal. Therefore, this study systematically summarizes the occurrence of MPs in different MSW treatment and disposal systems (landfill/dumpsite, compost, and incineration) on the Eurasian scale, and discusses the factors that influence MPs in individual MSW treatment and disposal systems. In addition, the paper assesses the occurrence of MPs in the surrounding environment of MSW treatment and disposal systems and their ecological risks using the species sensitivity distribution approach. The study also highlights recommendations for future research, to more comprehensively describe the occurrence and fate of MPs during MSW treatment and disposal processes, and to develop appropriate pollution control measures to minimize MP pollution.

6.
Int Immunopharmacol ; 131: 111876, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38493688

ABSTRACT

Colorectal cancer (CRC) is the third most common cancer and has the second highest mortality rate among cancers. The development of CRC involves both genetic and epigenetic abnormalities, and recent research has focused on exploring the ex-transcriptome, particularly post-transcriptional modifications. RNA-binding proteins (RBPs) are emerging epigenetic regulators that play crucial roles in post-transcriptional events. Dysregulation of RBPs can result in aberrant expression of downstream target genes, thereby affecting the progression of colorectal tumors and the prognosis of patients. Recent studies have shown that RBPs can influence CRC pathogenesis and progression by regulating various components of the tumor microenvironment (TME). Although previous research on RBPs has primarily focused on their direct regulation of colorectal tumor development, their involvement in the remodeling of the TME has not been systematically reported. This review aims to highlight the significant role of RBPs in the intricate interactions within the CRC tumor microenvironment, including tumor immune microenvironment, inflammatory microenvironment, extracellular matrix, tumor vasculature, and CRC cancer stem cells. We also highlight several compounds under investigation for RBP-TME-based treatment of CRC, including small molecule inhibitors such as antisense oligonucleotides (ASOs), siRNAs, agonists, gene manipulation, and tumor vaccines. The insights gained from this review may lead to the development of RBP-based targeted novel therapeutic strategies aimed at modulating the TME, potentially inhibiting the progression and metastasis of CRC.


Subject(s)
Cancer Vaccines , Colorectal Neoplasms , Humans , Tumor Microenvironment , RNA-Binding Proteins/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Extracellular Matrix
7.
Brief Bioinform ; 25(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38385872

ABSTRACT

Drug discovery and development constitute a laborious and costly undertaking. The success of a drug hinges not only good efficacy but also acceptable absorption, distribution, metabolism, elimination, and toxicity (ADMET) properties. Overall, up to 50% of drug development failures have been contributed from undesirable ADMET profiles. As a multiple parameter objective, the optimization of the ADMET properties is extremely challenging owing to the vast chemical space and limited human expert knowledge. In this study, a freely available platform called Chemical Molecular Optimization, Representation and Translation (ChemMORT) is developed for the optimization of multiple ADMET endpoints without the loss of potency (https://cadd.nscc-tj.cn/deploy/chemmort/). ChemMORT contains three modules: Simplified Molecular Input Line Entry System (SMILES) Encoder, Descriptor Decoder and Molecular Optimizer. The SMILES Encoder can generate the molecular representation with a 512-dimensional vector, and the Descriptor Decoder is able to translate the above representation to the corresponding molecular structure with high accuracy. Based on reversible molecular representation and particle swarm optimization strategy, the Molecular Optimizer can be used to effectively optimize undesirable ADMET properties without the loss of bioactivity, which essentially accomplishes the design of inverse QSAR. The constrained multi-objective optimization of the poly (ADP-ribose) polymerase-1 inhibitor is provided as the case to explore the utility of ChemMORT.


Subject(s)
Deep Learning , Humans , Drug Development , Drug Discovery , Poly(ADP-ribose) Polymerase Inhibitors
8.
Nitric Oxide ; 145: 33-40, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38382866

ABSTRACT

OBJECTIVE: Hydrogen sulfide (H2S) is associated with depressive-like behavior in rodents. We undertook cross-sectional and longitudinal analyses of plasma levels of H2S and its substrate homocysteine (Hcy) in depression and assessed the association of both parameters with psychopathology and cognitive function. METHODS: Forty-one patients suffering from depression (PSDs) and 48 healthy volunteers were recruited. PSDs were treated for 8 weeks. Analyzable data were collected from all participants for assessment of their psychopathology and cognitive function. Plasma was collected for determination of levels of H2S and Hcy, and data were correlated to determine their potential as plasma biomarkers. RESULTS: Cross-sectional analyses revealed PSDs to have a low plasma H2S level and high Hcy level. Longitudinal analyses revealed that 8 weeks of treatment reversed the changes in plasma levels of H2S and Hcy in PSDs. Plasma levels of H2S and Hcy were associated with psychopathology and cognitive function in depression. The area under the receiver operating characteristic curve (AUC) for a combination of plasma levels of H2S and Hcy and expression of the TNF gene (i.e., H2S-Hcy-TNF) was 0.848 for diagnosing depression and 0.977 for predicting the efficacy of antidepressant agents. CONCLUSION: Plasma levels of H2S and Hcy reflect changes in psychopathology and cognitive function in depression and H2S-Hcy-TNF has the potential to diagnose depression and predict the efficacy of antidepressant medications.


Subject(s)
Hydrogen Sulfide , Humans , Hydrogen Sulfide/metabolism , Cross-Sectional Studies , Homocysteine
9.
Brain Imaging Behav ; 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38409462

ABSTRACT

The default mode network (DMN) can be subdivided into ventral and dorsal subsystems, which serve affective cognition and mental sense construction, respectively. An internally dissociated pattern of anti-correlations was observed between these two subsystems. Although numerous studies on neuroticism and openness have demonstrated the neurological functions of the DMN, little is known about whether different subsystems and hubs regions within the network are engaged in different functions in response to the two traits. We recruited 223 healthy volunteers in this study and collected their resting-state functional magnetic resonance imaging (fMRI) and NEO Five-Factor Inventory scores. We used independent component analysis (ICA) to obtain the DMN, before further decomposing it into the ventral and dorsal subsystems. Then, the network coherence of hubs regions within subsystems was extracted to construct two structural equation models (SEM) to explore the relationship between neuroticism and openness traits and DMN. We observed that the ventral DMN could significantly predict positive openness and negative neuroticism. The dorsal DMN was diametrically opposed. Additionally, the medial prefrontal cortex (mPFC) and middle temporal gyrus (MTG), both of which are core hubs of the subnetworks within the DMN, are significantly positively correlated with neuroticism and openness. These findings may point to a biological basis that neuroticism and openness are engaged in opposite mechanisms and support the hypothesis about the functional dissociation of the DMN.

10.
Water Res ; 252: 121215, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38309069

ABSTRACT

Per- and polyfluoroalkyl substances (PFASs) have become a crucial environmental concern owing to their exceptional persistence, ability to bioaccumulate within ecosystems, and potential to adversely affect biota. Products and materials containing PFASs are usually discarded into municipal solid waste (MSW) at the end of their life cycle, and the fate of PFASs may differ when different disposal methods of MSWs are employed. To date, limited research has focus on the occurrence, behaviors, and fate of PFASs emitted from various MSW disposal sites. This knowledge gap may lead to an underestimation of the contribution of MSW disposal sites as a source of PFASs in the environment. In this review, we collated publications concerning PFASs from typical MSW disposal sites (i.e., landfills, incineration plants, and composting facilities) and explored the occurrence patterns and behaviors of PFASs across various media (e.g., landfill leachate/ambient air, incineration plant leachate/ash, and compost products) in these typical MSW disposal sites. In particular, this review highlighted ultrashort-chain perfluoroalkyl acids and "unknown"/emerging PFASs. Additionally, it meticulously elucidated the use of non-specific techniques and non-target analysis for screening and identifying these overlooked PFASs. Furthermore, the composition profiles, mass loads, and ecological risks of PFASs were compared across the three typical disposal methods. To the best of our knowledge, this is the first review regarding the occurrence, behaviors, and fate of PFASs in typical MSW disposal sites on a global scale, which can help shed light on the potential environmental impacts of PFASs harbored in MSWs and guide future waste management practices.


Subject(s)
Fluorocarbons , Refuse Disposal , Ecosystem , Refuse Disposal/methods , Solid Waste/analysis , Waste Disposal Facilities
11.
Behav Res Methods ; 56(2): 846-859, 2024 Feb.
Article in English | MEDLINE | ID: mdl-36881355

ABSTRACT

In this article, we introduce the Chinese Children's Lexicon of Oral Words (CCLOOW), the first lexical database based on animated movies and TV series for 3-to-9-year-old Chinese children. The database computes from 2.7 million character tokens and 1.8 million word tokens. It contains 3920 unique character and 22,229 word types. CCLOOW reports frequency and contextual diversity metrics of the characters and words, as well as length and syntactic categories of the words. CCLOOW frequency and contextual diversity measures correlated well with other Chinese lexical databases, particularly well with that computed from children's books. The predictive validity of CCLOOW measures were confirmed with Grade 2 children's naming and lexical decision experiments. Further, we found that CCLOOW frequencies could explain a considerable proportion in adults' written word recognition, indicating that early language experience might have lasting impacts on the mature lexicon. CCLOOW provides validated frequency and contextual diversity estimates that complements current children's lexical database based on written language samples. It is freely accessible online at https://www.learn2read.cn/ccloow .


Subject(s)
East Asian People , Language , Child , Child, Preschool , Humans , Benchmarking , China , Databases, Factual
12.
Nanomedicine ; 56: 102726, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38052371

ABSTRACT

The pressing demand for innovative approaches to create delivery systems with heightened drug loading and prolonged circulation has spurred numerous efforts, yielding some successes but accompanied by constraints. Our study proposes employing dendritic lipopeptide with precisely balanced opposing charges to extend blood residency for biomimetic nanoplatforms. Neutrally mixed-charged zwitterionic nanoparticles (NNPs) achieved a notable 19 % simvastatin loading content and kept stable even after one-month storage at 4 °C. These nanoplatforms demonstrated low cytotoxicity in NIH-3T3 and L02 cells and negligible hemolysis (<5 %). NNPs inhibited protein adhesion (>95 %) from positively and negatively charged sources through surface hydration. In comparison to positively charged CNPs, NNPs demonstrated an 86 % decrease in phagocytic rate by BMDMs, highlighting their efficacy. Importantly, NNPs showed prolonged circulation compared to CNPs and free simvastatin. These findings highlight the potential of this biomimetic nanoplatform for future therapeutic applications with enhanced drug loading and circulation traits.


Subject(s)
Biomimetics , Nanoparticles , Pharmaceutical Preparations , Simvastatin/pharmacology , Nanoparticles/chemistry , Drug Delivery Systems
13.
J Hazard Mater ; 465: 133225, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38113732

ABSTRACT

Pollution by microplastics (MPs) has caused potential threats to the environment. Understanding the sources of MPs in the environment can help control their emissions and reduce environmental risks. Source apportionment of MPs has been conducted according to the characteristics of MPs themselves (such as types of polymers and morphological characteristics). However, the specificity and resolution of the appointments of sources need to be improved. Organic pollutants adsorbed on MPs can be used as a novel and reliable indicator to identify the source of MPs in the environment. In the present work, the analytical methods of MPs and organic pollutants adsorbed on MPs were critically reviewed, and the occurrence of organic pollutants and factors influencing their adsorption on MPs were discussed. Furthermore, the potential applications of organic pollutants adsorbed on MPs as indicators for determining the sources of MPs were highlighted. The study would help recognize the sources of MPs, which will support efforts aimed at reducing their emissions and further pollution of the ecosystem.

14.
Heliyon ; 9(12): e22930, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38058438

ABSTRACT

Objective: The aim of our study was to investigate whether the Dietary Inflammatory Index (DII) correlated with gout in American adults. Method: The study used data from the 2007-2018 National Health and Nutrition Examination Survey, with 27,710 adults participating. Initially, multivariable analysis was performed, with controls for covariates, to assess the link of DII and gout. Then, restricted cubic splines (RCS) were applied to model the nonlinear relationship of DII and gout. Furthermore, propensity score matching (PSM) as a further study of potential relationships was established. Eventually, subgroup analysis was performed. Result: Participants within the highest DII quartile would be more susceptible to increased risk of gout in the univariate regression model (Q4 vs. Q1, OR = 1.31, CI: 1.05-1.63). Additionally, a positive correlation was detected between gout risk and DII after adjusting on drinking, smoking, gender, race, age, and BMI. Based on RCS analysis, we observed that the risk of gout raised sharply as DII values increased, then flattened, and increased sharply again when the DII was greater than approximately 2.5. After performing the PSM, it was observed that DII correlated in a positive way to the presence of gout on a fully adjusted multivariable model. Subgroup analysis revealed that the link of DII and gout showed no statistical significance in females, blacks, Mexicans, nor in the population that smoked. Conclusion: Greater degrees of pro-inflammation correlate with a higher risk of gout and might be a predisposing factor for gout. Hence, tactics fostering an anti-inflammatory diet for preventing and improving gout in adults should be regarded.

15.
Int Immunopharmacol ; 125(Pt B): 111172, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37951193

ABSTRACT

Inhibition of mammalian target of rapamycin (mTOR), which is a component of both mTORC1 and mTORC2, leads to clinical benefits for organ transplant recipients. Pathways to inhibit mTOR include strengthening the association of FKBP12-mTOR or competing with ATP at the active site of mTOR, which have been applied to the design of first- and second-generation mTOR inhibitors, respectively. However, the clinical efficacy of these mTOR inhibitors may be limited by side effects, compensatory activation of kinases and attenuation of feedback inhibition of receptor expression. A new generation of mTOR inhibitors possess a core structure similar to rapamycin and covalently link to mTOR kinase inhibitors, resulting in moderate selectivity and potent inhibition of mTORC1. Since the immunosuppressive potential of this class of compounds remains unknown, our goal is to examine the therapeutic efficacy of a third-generation mTOR inhibitor in organ transplantation. In this study, RapaLink-1 outperformed rapamycin in inhibiting T-cell proliferation and significantly prolonged graft survival time. Mechanistically, the ameliorated rejection induced by RapaLink-1 is associated with a reduction in p-4E-BP1 in T cells, resulting in an elevation in Treg cells alongside a decline in Th1 and Th17 cells. For the first time, these studies demonstrate the effectiveness of third-generation mTOR inhibitors in inhibiting allograft rejection, highlighting the potential of this novel class of mTOR inhibitors for further investigation.


Subject(s)
MTOR Inhibitors , Sirolimus , Animals , Mice , Mechanistic Target of Rapamycin Complex 1 , Sirolimus/therapeutic use , TOR Serine-Threonine Kinases , Allografts , Mammals
16.
Quant Imaging Med Surg ; 13(10): 7117-7141, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37869281

ABSTRACT

Background: Indocyanine green (ICG) fluorescence navigation can enhance the visualization of gastric cancer (GC) lesions, increase the lymph node detection rate, and reduce the incidence of anastomotic leakage in the treatment of GC. It thus holds considerable potential for application in GC clinical surgery and has attracted widespread research interest. The purpose of this study was to visualize the current topics and emerging trends in research regarding ICG in GC. Methods: We searched the Web of Science Core Collection (WoSCC) for articles relevant to the use of ICG in GC. The resulting information was then analyzed from a bibliometric and knowledge graph analysis perspective using CiteSpace, Scimago Graphica, and R Studio so that the key trends and hot spots in research within this field could be identified and visualized. Results: Ultimately, 1,385 papers from 58 countries or regions published from 1991 to 2022 were included in this study. The largest number of publications were from China, followed by Japan and the United States. High-yield institutions were concentrated in Asian countries, especially China. The top publication contributors were Shanghai Jiao Tong University. Li Y and Bang YJ ranked first among the top 10 most productive authors and top 10 most cocited authors, respectively. World Journal of Gastroenterology was the most productive academic journal on ICG in GC, while Cancer Research was the most commonly cocited journal. The keyword "indocyanine green" was among the top 5 keywords, and will likely remain a popular topic in future research. Furthermore, the emerging themes including surgery, biopsy, lymphadenectomy, dissection, and gastrectomy have attracted increasing attention. Conclusions: Current research hotspots in this area focus on the clinical implementation of ICG in precision surgery for GC. Given the imaging tracer characteristics of ICG and its utility in GC surgery, the optimization and application of ICG-guided precision surgery techniques for GC will be a research hot spot going forward.

17.
Elife ; 122023 10 30.
Article in English | MEDLINE | ID: mdl-37902629

ABSTRACT

Accumulating evidence indicates that acetate is increased under energy stress conditions such as those that occur in diabetes mellitus and prolonged starvation. However, how and where acetate is produced and the nature of its biological significance are largely unknown. We observed overproduction of acetate to concentrations comparable to those of ketone bodies in patients and mice with diabetes or starvation. Mechanistically, ACOT12 and ACOT8 are dramatically upregulated in the liver to convert free fatty acid-derived acetyl-CoA to acetate and CoA. This conversion not only provides a large amount of acetate, which preferentially fuels the brain rather than muscle, but also recycles CoA, which is required for sustained fatty acid oxidation and ketogenesis. We suggest that acetate is an emerging novel 'ketone body' that may be used as a parameter to evaluate the progression of energy stress.


Subject(s)
Liver , Starvation , Humans , Animals , Mice , Acetyl Coenzyme A , Acetates , Brain , Fatty Acids, Nonesterified , Ketone Bodies , Thiolester Hydrolases
18.
Opt Lett ; 48(17): 4428-4431, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37656520

ABSTRACT

Grover's search algorithm is a well-known quantum algorithm that has been extensively studied and improved to increase its success rate and enhance its flexibility. However, most improved search algorithms require an adjustment of the oracle, which may not be feasible in practical problem-solving scenarios. In this work, we report an experimental demonstration of a deterministic quantum search for multiple marked states without adjusting the oracle. A linear optical setup is designed to search for two marked states, one in a 16-state database with an initial equal-superposition state and the other in an 8-state database with different initial nonequal-superposition states. The evolution of the probability of finding each state in the database is also measured and displayed. Our experimental results agree well with the theoretical predictions, thereby proving the feasibility of the search protocol and the implementation scheme. This work is a pioneering experimental demonstration of deterministic quantum search for multiple marked states without adjusting the oracle.

19.
J Mol Cell Biol ; 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37771073

ABSTRACT

ELP3, the catalytic subunit of Elongator complex, is an acetyltransferase and associated with tumor progression. However, the detail of ELP3 oncogenic function remains largely unclear. Here, we found that ELP3 stabilizes c-Myc to promote tumorigenesis in an acetyltransferase-independent manner. Mechanically, ELP3 competes with the E3-ligase FBXW7ß for c-Myc binding, resulting in the inhibition of FBXW7ß-mediated ubiquitination and proteasomal degradation of c-Myc. ELP3-knockdown diminishes glycolysis and glutaminolysis and dramatically retards cell proliferation and xenograft growth by downregulating c-Myc, and such effects are rescued by reconstitution of c-Myc expression. Moreover, ELP3 and c-Myc were overexpressed with a positive correlation in colorectal cancer and hepatocellular carcinoma. Taken together, we elucidate a new function of ELP3 in promoting tumorigenesis by stabilizing c-Myc, suggesting that inhibition of ELP3 is a potential strategy for the therapy of c-Myc-driven carcinomas.

20.
BMC Psychiatry ; 23(1): 611, 2023 08 21.
Article in English | MEDLINE | ID: mdl-37605121

ABSTRACT

BACKGROUND: The exosomal lncRNA-miRNA-mRNA networks in first episode schizophrenia (FOS) have not reported yet. This study examined the lncRNA, miRNA and mRNA expression level in exosome derived from first episode schizophrenia (FOS) patients, and explored the the potential of exosomes as biomarkers for schizophrenia. METHODS: We recruited 10 FOS patients and healthy controls (HCs) respectively, examined the lncRNA, miRNA and mRNA expression level of plasma exosome by high throughput sequencing, constructed lncRNA-miRNA-mRNA network, and performed correlation analysis, GO and KEGG pathway analysis, PPI network construction and ROC analysis. RESULTS: There were 746 differently expressed lncRNA, 22 differently expressed miRNA, and 2637 differently expressed mRNA in plasma exosome in FOS compared with HCs. Then we constructed ceRNA network consisting of 8 down-regulated lncRNA, 7 up-regulated miRNA and 65 down-regulated mRNA, and 1 up-regulated lncRNA, 1 down-regulated miRNA and 4 up-regulated mRNA. The expression level of 1 lncRNA and 7 mRNA in exosomal network were correlated with PANSS score. GO and KEGG pathway analysis showed that 4 up-regulated mRNAs were enriched in neuropsychiatric system function. Down-regulated mRNA EZH2 and SIRT1 were identified as hub gene. Finally, we detected the ROC curve of ENSG00000251562, miR-26a-5p, EZH2, miR-22-3p, SIRT1, ENSG00000251562-miR-26a-5p-EZH2, ENSG00000251562-miR-22-3p-SIRT1, and found that the AUC of ceRNA network was higher than lncRNA, miRNA and mRNA alone. CONCLUSION: We constructed the lncRNA-miRNA-mRNA network in exosome derived from FOS plasma, and found that lncRNA-miRNA-mRNA network has potential as biomarkers for FOS.


Subject(s)
Exosomes , MicroRNAs , RNA, Long Noncoding , Schizophrenia , Humans , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Sirtuin 1 , Exosomes/genetics , Schizophrenia/diagnosis , Schizophrenia/genetics , RNA, Messenger/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...