Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Vaccines (Basel) ; 12(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38250876

ABSTRACT

Colorectal cancer (CRC) currently ranks as the third most common cancer in the United States, and its incidence is on the rise, especially among younger individuals. Despite the remarkable success of immune checkpoint inhibitors (ICIs) in various cancers, most CRC patients fail to respond due to intrinsic resistance mechanisms. While microsatellite instability-high phenotypes serve as a reliable positive predictive biomarker for ICI treatment, the majority of CRC patients with microsatellite-stable (MSS) tumors remain ineligible for this therapeutic approach. In this study, we investigated the role of centrosomal protein 55 (CEP55) in shaping the tumor immune microenvironment in CRC. CEP55 is overexpressed in multiple cancer types and was shown to promote tumorigenesis by upregulating the PI3K/AKT pathway. Our data revealed that elevated CEP55 expression in CRC was associated with reduced T cell infiltration, contributing to immune exclusion. As CRC tumors progressed, CEP55 expression increased alongside sequential mutations in crucial driver genes (APC, KRAS, TP53, and SMAD4), indicating its involvement in tumor progression. CEP55 knockout significantly impaired tumor growth in vitro and in vivo, suggesting that CEP55 plays a crucial role in tumorigenesis. Furthermore, the CEP55 knockout increased CD8+ T cell infiltration and granzyme B production, indicating improved anti-tumor immunity. Additionally, we observed reduced regulatory T cell infiltration in CEP55 knockout tumors, suggesting diminished immune suppression. Most significantly, CEP55 knockout tumors demonstrated enhanced responsiveness to immune checkpoint inhibition in a clinically relevant orthotopic CRC model. Treatment with anti-PD1 significantly reduced tumor growth in CEP55 knockout tumors compared to control tumors, suggesting that inhibiting CEP55 could improve the efficacy of ICIs. Collectively, our study underscores the crucial role of CEP55 in driving immune exclusion and resistance to ICIs in CRC. Targeting CEP55 emerges as a promising therapeutic strategy to sensitize CRC to immune checkpoint inhibition, thereby improving survival outcomes for CRC patients.

2.
IET Syst Biol ; 17(6): 352-365, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37907428

ABSTRACT

With increasing research on idiopathic pulmonary fibrosis (IPF) and gastroesophageal reflux disease (GERD), more and more studies have indicated that GERD is associated with IPF, but the underlying pathological mechanisms remain unclear. The aim of the present study is to identify and analyse the differentially expressed genes (DEGs) between IPF and GERD and explore the relevant molecular mechanisms via bioinformatics analysis. Four GEO datasets (GSE24206, GSE53845, GSE26886, and GSE39491) were downloaded from the GEO database, and DEGs between IPF and GERD were identified with the online tool GEO2R. Subsequently, a series of bioinformatics analyses are conducted, including Kyoto Encyclopaedia of Genes and Genomes (KEGG) and gene ontology (GO) enrichment analyses, the PPI network, biological characteristics, TF-gene interactions, TF-miRNA coregulatory networks, and the prediction of drug molecules. Totally, 71 genes were identified as DEGs in IPF and GERD. Five KEGG pathways, including Amoebiasis, Protein digestion and absorption, Relaxin signalling pathway, AGE-RAGE signalling pathway in diabetic complications, and Drug metabolism - cytochrome P450, were significantly enriched. In addition, eight hub genes, including POSTN, MMP1, COL3A1, COL1A2, CXCL12, TIMP3, VCAM1, and COL1A1 were selected from the PPI network by Cytoscape software. Then, five hub genes (MMP1, POSTN, COL3A1, COL1A2, and COL1A1) with high diagnostic values for IPF and GERD were validated by GEO datasets. Finally, TF-gene and miRNA interaction was identified with hub genes and predicted drug molecules for the IPF and GERD. And the results suggest that cetirizine, luteolin, and pempidine may have great potential therapeutic value in IPF and GERD. This study will provide novel strategies for the identification of potential biomarkers and valuable therapeutic targets for IPF and GERD.


Subject(s)
Gastroesophageal Reflux , Idiopathic Pulmonary Fibrosis , MicroRNAs , Humans , Gene Expression Profiling/methods , Matrix Metalloproteinase 1/genetics , Biomarkers, Tumor/genetics , MicroRNAs/genetics , Idiopathic Pulmonary Fibrosis/genetics , Gastroesophageal Reflux/diagnosis , Gastroesophageal Reflux/genetics , Computational Biology/methods
3.
Mol Ther Oncolytics ; 31: 100727, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-37822487

ABSTRACT

Most colorectal cancer (CRC) patients present with a microsatellite-stable phenotype, rendering them resistant to immune checkpoint inhibitors (ICIs). Among the contributors to ICI resistance, tumor-derived extracellular vesicles (TEVs) have emerged as critical players. Previously we demonstrated that autologous transfer of TEVs without miR-424 can induce tumor antigen-specific immune responses in CRC models. Therefore, we postulated that allogeneic TEVs, modified to lack miR-424 and derived from an MC38 cells, could induce CD8+ T cell responses while restraining CT26 cell-based tumor. Here, we show that prophylactic administration of MC38 TEVs, without miR-424, showed a significant augmentation in CD8+ T-cells within CT26 tumors. This allogenic TEV effect was evident in CT26 tumors but not B16-F10 melanoma. Furthermore, we demonstrated the capacity of dendritic cells (DCs) to internalize TEVs, a possible mechanism to elicit immune response. Our investigation of autologously administered DCs, which had been exposed to modified TEVs, underscores their potential to dampen tumor growth while elevating CD8+ T cell levels vis-a-vis MC38 wild-type TEVs exposed to DCs. Notably, the modified TEVs were well tolerated and did not increase peripheral blood cytokine levels. Our findings underscore the potential of modified allogeneic TEVs without immune-suppressive factors to elicit robust T cell responses and limit tumor growth.

4.
Sci Rep ; 13(1): 16832, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37803087

ABSTRACT

Dietary saturate fatty acids (SFAs) have been consistently linked to atherosclerosis and obesity, both of which are characterized by chronic inflammation and impaired lipid metabolism. In comparison, the effects of linoleic acid (LA), the predominant polyunsaturated fatty acid in the Western diet, seem to diverge. Data from human studies suggest a positive association between high dietary intake of LA and the improvement of cardiovascular risk. However, excessive LA intake has been implicated in the development of obesity. Concerns have also been raised on the potential pro-inflammatory properties of LA metabolites. Herein, by utilizing a mouse model with liver-specific Ldlr knockdown, we directly determined the effects of replacing SFAs with LA in a Western diet on the development of obesity and atherosclerosis. Specifically, mice treated with a Ldlr ASO were placed on a Western diet containing either SFA-rich butter (WD-B) or LA-rich corn oil (WD-CO) for 12 weeks. Despite of showing no changes in body weight gain or adiposity, mice on WD-CO exhibited significantly less atherosclerotic lesions compared to those on WD-B diet. Reduced lesion formation in the WD-CO-fed mice corresponded with a reduction of plasma triglyceride and cholesterol content, especially in VLDL and LDL, and ApoB protein levels. Although it increased expression of proinflammatory cytokines TNF-α and IL-6 in the liver, WD-CO did not appear to affect hepatic injury or damage when compared to WD-B. Collectively, our results indicate that replacing SFAs with LA in a Western diet could reduce the development of atherosclerosis independently of obesity.


Subject(s)
Atherosclerosis , Fatty Acids , Mice , Humans , Animals , Fatty Acids/metabolism , Linoleic Acid/metabolism , Diet, Western/adverse effects , Liver/metabolism , Atherosclerosis/pathology , Receptors, LDL/genetics , Receptors, LDL/metabolism , Obesity/metabolism
5.
Cancers (Basel) ; 15(16)2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37627225

ABSTRACT

In recent years, cancer immunotherapy research has made remarkable progress, completely transforming the cancer treatment landscape [...].

6.
bioRxiv ; 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37131597

ABSTRACT

Colorectal Cancer (CRC) is the second leading cause of cancer-related death in the United States. Most CRC patients present with a microsatellite stable (MSS) phenotype and are highly resistant to immunotherapies. Tumor extracellular vesicles (TEVs), secreted by tumor cells, can contribute to intrinsic resistance to immunotherapy in CRC. We previously showed that autologous TEVs without functional miR-424 induce anti-tumor immune responses. We hypothesized that allogeneic modified CRC-TEVs without miR-424 (mouse homolog miR-322) derived from an MC38 background would effectively stimulate CD8+ T cell response and limit CT26 tumor growth. Here we show that prophylactic administration of MC38 TEVs without functional miR-424 significantly increased CD8+ T cells in CT26 CRC tumors and limited tumor growth, not B16-F10 melanoma tumors. We further show that the depletion of CD4+ and CD8+ T cells abolished the protective effects of MC38 TEVs without functional miR-424. We further show that TEVs can be taken up by DCs in vitro, and subsequent prophylactic administration of autologous DCs exposed to MC38 TEVs without functional miR-424 suppressed tumor growth and increased CD8+ T cells compared to MC38 wild-type TEVs exposed to DCs, in Balb/c mice bearing CT26 tumors. Notably, the modified EVs were well tolerated and did not increase cytokine expression in peripheral blood. These findings suggest that allogeneic-modified CRC-EVs without immune suppressive miR-424 can induce antitumor CD8+ T cell responses and limit tumor growth in vivo.

7.
Pharmacol Ther ; 241: 108332, 2023 01.
Article in English | MEDLINE | ID: mdl-36526013

ABSTRACT

Despite significant advances in the screening, diagnosis, and treatment of colorectal cancer (CRC) immune checkpoint inhibitors (ICIs) continue to have limited utility outside of microsatellite-high disease. Given the durable response to immunotherapy seen across malignancies, increasing CRC response rates to ICI therapy is an active area of clinical research. An increasing body of work has demonstrated that tumor-derived extracellular vesicles (TEVs) are key modulators in tumor signaling and the determinants of the tumor microenvironment. Pre-clinical models have shown that TEVs are directly involved in antigen presentation and are involved in radiation-induced DNA damage signaling. Both direct and indirect modifications of these TEVs can alter CRC immunogenicity and ICI treatment response, making them attractive targets for potential therapeutic development. In addition, modified TEVs can be developed using several different mechanisms, with varied cargo including micro-RNAs and small peptide molecules. Recent work has shown strong pre-clinical evidence of injected modified TEV-induced ICI activity, with knockdown of the micro-RNA miR-424 in TEVs improving CRC immunogenicity and increasing anti-PD-1 activity in mouse models. Clinical trials are ongoing in the evaluation of modified TEVs in cancer therapy, but they appear to be a promising therapeutic target in CRC.


Subject(s)
Colorectal Neoplasms , Extracellular Vesicles , MicroRNAs , Animals , Colorectal Neoplasms/drug therapy , Immunotherapy , MicroRNAs/genetics , Tumor Microenvironment , Humans
8.
Waste Manag ; 155: 162-178, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36379166

ABSTRACT

Landfills have served as the final repository for > 50 % municipal solid wastes in the United States. Because of their widespread uses and persistence in the environment, per- and polyfluoroalkyl substances (PFAS) (>4000 on the global market) are ubiquitously present in everyday consumer, commercial and industrial products, and have been widely detected in both closed (tens ng/L) and active (thousands to ten thousands ng/L) landfills due to disposal of PFAS-containing materials. Along with the decomposition of wastes in-place, PFAS can be transformed and released from the wastes into leachate and landfill gas. Consequently, it is critical to understand the occurrence and transformation of PFAS in landfills and the effectiveness of landfills, as a disposal alternative, for long-term containment of PFAS. This article presents a state-of-the-art review on the occurrence and transformation of PFAS in landfills, and possible effect of PFAS on the integrity of modern liner systems. Based on the data published from 10 countries (250 + landfills), C4-C7 perfluoroalkyl carboxylic acids were found predominant in the untreated landfill leachate and neutral PFAS, primarily fluorotelomer alcohols, in landfill air. The effectiveness and limitations of the conventional leachate treatment technologies and emerging technologies were also evaluated to address PFAS released into the leachate. Among conventional technologies, reverse osmosis (RO) may achieve a high removal efficiency of 90-100 % based on full-scale data, which, however, is vulnerable to the organic fouling and requires additional disposal of the concentrate. Implications of these knowledge on PFAS management at landfills are discussed and major knowledge gaps are identified.


Subject(s)
Fluorocarbons , Refuse Disposal , Water Pollutants, Chemical , Fluorocarbons/analysis , Waste Disposal Facilities , Solid Waste , Water Pollutants, Chemical/analysis , Carboxylic Acids
9.
Pharmacol Ther ; 231: 107981, 2022 03.
Article in English | MEDLINE | ID: mdl-34480964

ABSTRACT

Despite significant advances over the past 2 decades in preventive screening and therapy aimed at improving patient survival, colorectal cancer (CRC) remains the second most common cause of cancer death in the United States. The average 5-year survival rate of CRC patients with positive regional lymph nodes is only 40%, while less than 5% of patients with distant metastases survive beyond 5 years. There is a critical need to develop novel therapies that can improve overall survival in patients with poor prognoses, particularly since 60% of them are diagnosed at an advanced stage. Pertinently, immune checkpoint blockade therapy has dramatically changed how we treat CRC patients with microsatellite-instable high tumors. Furthermore, accumulating evidence shows that changes in gut microbiota are associated with the regulation of host antitumor immune response and cancer progression. Appropriate animal models are essential to deciphering the complex mechanisms of host antitumor immune response and tumor-gut microbiome metabolic interactions. Here, we discuss various mouse models of colorectal cancer that are developed to address key questions on tumor immune response and tumor-microbiota interactions. These CRC models will also serve as resourceful tools for effective preclinical studies.


Subject(s)
Colorectal Neoplasms , Gastrointestinal Microbiome , Animals , Colorectal Neoplasms/drug therapy , Humans , Immunity , Mice
10.
Medicine (Baltimore) ; 101(52): e32388, 2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36596048

ABSTRACT

To investigate the effect of dexmedetomidine (DEX) on hemodynamics and recovery period after femoral shaft fracture surgery. Fifty-two patients, aged 3 to 7 years, who underwent femoral shaft fracture reduction surgery in our hospital in 2019 were randomly divided into the experimental group (n = 26) and the control group (n = 26). Both groups were given routine propofol combined with remifentanil by intravenous anesthesia. The experimental group was continuously pumped with DEX after induction of anesthesia, while the control group was continuously pumped with the same volume of normal saline. The mean arterial pressure (MAP) and heart rate (HR) were recorded before anesthesia induction (T0), when laryngeal mask was inserted (T1), when skin was cut (T2), when intramedullary needle was inserted (T3), and when laryngeal mask was removed (T4). Extubation time after anesthesia withdrawal was recorded in the 2 groups. According to the Pediatric Anesthesia Emergence Delirium score, the agitation and the incidence of agitation were recorded immediately after extubation (T5), 10 minutes after entering the recovery room (T6) and 30 minutes after entering the recovery room (T7). There was no significant difference in MAP and HR between the 2 groups at T0 and T1 time points (P > .05). The MAP and HR of the experimental group at T2 to T4 were significantly lower than those of the control group (P < .05). The extubation time of the experimental group was longer than that of the control group (P < .05), but the Pediatric Anesthesia Emergence Delirium score and the incidence of agitation in the recovery period of the experimental group were lower than those of the control group (P < .05). In femoral shaft fracture surgery, intravenous anesthesia combined with continuous pumping DEX can effectively stabilize the hemodynamics of patients, and the incidence of postoperative agitation during anesthesia recovery is low.


Subject(s)
Anesthetics , Dexmedetomidine , Emergence Delirium , Propofol , Humans , Child , Emergence Delirium/prevention & control , Propofol/adverse effects , Anesthesia, General
11.
Cancers (Basel) ; 13(22)2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34830808

ABSTRACT

The past decade has seen immunotherapy rise to the forefront of cancer treatment [...].

12.
Cancers (Basel) ; 13(19)2021 Oct 07.
Article in English | MEDLINE | ID: mdl-34638505

ABSTRACT

Colorectal cancer (CRC) is one of the most common malignancies in both morbidity and mortality. Immune checkpoint blockade (ICB) treatments have been successful in a portion of mismatch repair-deficient (dMMR) CRC patients but have failed in mismatch repair-proficient (pMMR) CRC patients. Atypical Chemokine Receptor 4 (ACKR4) is implicated in regulating dendritic cell (DC) migration. However, the roles of ACKR4 in CRC development and anti-tumor immunoregulation are not known. By analyzing human CRC tissues, transgenic animals, and genetically modified CRC cells lines, our study revealed an important function of ACKR4 in maintaining CRC immune response. Loss of ACKR4 in CRC is associated with poor immune infiltration in the tumor microenvironment. More importantly, loss of ACKR4 in CRC tumor cells, rather than stromal cells, restrains the DC migration and antigen presentation to the tumor-draining lymph nodes (TdLNs). Moreover, tumors with ACKR4 knockdown become less sensitive to immune checkpoint blockade. Finally, we identified that microRNA miR-552 negatively regulates ACKR4 expression in human CRC. Taken together, our studies identified a novel and crucial mechanism for the maintenance of the DC-mediated T-cell priming in the TdLNs. These new findings demonstrate a novel mechanism leading to immunosuppression and ICB treatment resistance in CRC.

13.
J Healthc Eng ; 2021: 5169803, 2021.
Article in English | MEDLINE | ID: mdl-34336155

ABSTRACT

This paper aimed to study the application of local anesthetics combined with transversus abdominis plane (TAP) block in gynecological laparoscopy (GLS) surgery during perioperative period under the guidance of ultrasound image enhanced by the wavelet transform image enhancement (WTIE) algorithm. 56 patients who underwent GLS surgery in hospital were selected and classified as the infiltrating group and block group. The puncture needle was guided by ultrasound images under WTIE algorithm, and 0.375% ropivacaine was adopted to block TAP. The results showed that the dosage of propofol in the infiltrating group (313.23 ± 19.67 mg) was remarkably inferior to the infiltrating group (377.67 ± 21.56 mg) (P < 0.05). The hospitalization time of patients in the infiltrating group (2.14 ± 0.18 days) was obviously shorter than that of the infiltrating group (3.23 ± 0.27 days) (P < 0.05). 3 h, 6 h, and 12 h after the operation, the visual analogue scores (3.82 ± 1.58 points, 2.97 ± 1.53 points, and 1.38 ± 0.57 points) of the patients in the infiltration group were considerably higher than the infiltrating group (2.31 ± 1.46 points, 1.06 ± 1.28 points, and 0.95 ± 0.43 points) (P < 0.05). 3 h, 6 h, and 12 h after the operation, the number of patients in the infiltrating group who used tramadol for salvage analgesia (2 cases, 1 case, and 1 case) was notably less than that in the infiltration group (9 cases, 7 cases, and 3 cases) (P < 0.05). In short, local anesthetics combined with TAP block can reduce postoperative VAS score and postoperative nausea and vomiting (PONV) score, which also reduced the incidence of postoperative analgesia.


Subject(s)
Anesthetics, Local , Laparoscopy , Abdominal Muscles , Algorithms , Analgesics, Opioid , Humans , Image Enhancement , Pain, Postoperative/prevention & control , Wavelet Analysis
14.
Gastroenterology ; 161(2): 560-574.e11, 2021 08.
Article in English | MEDLINE | ID: mdl-33895168

ABSTRACT

BACKGROUND & AIMS: Colorectal cancer is a major cause of cancer-related deaths worldwide. Immune checkpoint blockade therapies are effective in 30%-60% of the microsatellite instable-high subtype. Unfortunately, most patients with colorectal cancer (>85%) have microsatellite stable tumors that do not respond. In this study, we aimed to decipher the underlying tumor-intrinsic mechanisms critical for improving immunotherapy in colorectal cancer. METHODS: We used human and mouse tumor samples, cell lines, human colorectal cancer organoids, and various syngeneic orthotopic mouse models of late-stage colorectal cancer to define the effects of tumor cell-secreted extracellular vesicles (EVs) on antitumor immune response. RESULTS: Our analyses of human colorectal cancer immune profiles and tumor-immune cell interactions showed that tumor-secreted EVs containing microRNA miR-424 suppressed the CD28-CD80/86 costimulatory pathway in tumor-infiltrating T cells and dendritic cells, leading to immune checkpoint blockade resistance. Modified tumor-secreted EVs with miR-424 knocked down enhanced T-cell-mediated antitumor immune response in colorectal cancer tumor models and increased the immune checkpoint blockade response. Intravenous injections of modified tumor-secreted EVs induced tumor antigen-specific immune responses and boosted the immune checkpoint blockade efficacy in colorectal cancer models that mimic aggressively progressing, late-stage disease. CONCLUSIONS: Collectively, we show a critical role for tumor-secreted EVs in antitumor immune regulation and immunotherapy response, which could be developed as a novel treatment for immune checkpoint blockade-resistant colorectal cancer.


Subject(s)
Colorectal Neoplasms/immunology , Extracellular Vesicles/immunology , Lymphocyte Activation , Lymphocytes, Tumor-Infiltrating/immunology , Tumor Microenvironment , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , B7-1 Antigen/genetics , B7-1 Antigen/metabolism , B7-2 Antigen/genetics , B7-2 Antigen/metabolism , CD28 Antigens/genetics , CD28 Antigens/metabolism , Caco-2 Cells , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Drug Resistance, Neoplasm , Extracellular Vesicles/drug effects , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , HT29 Cells , Humans , Immune Checkpoint Inhibitors/pharmacology , Jurkat Cells , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, SCID , Mice, Transgenic , MicroRNAs/genetics , MicroRNAs/metabolism , Phenotype , Tumor Hypoxia
15.
Cancers (Basel) ; 12(5)2020 May 05.
Article in English | MEDLINE | ID: mdl-32380703

ABSTRACT

Immune checkpoint blockade therapy (ICBT) has revolutionized the treatment and management of numerous cancers, yet a substantial proportion of patients who initially respond to ICBT subsequently develop resistance. Comprehensive genomic analysis of samples from recent clinical trials and pre-clinical investigation in mouse models of cancer provide insight into how tumors evade ICBT after an initial response to treatment. Here, we summarize our current knowledge on the development of acquired ICBT resistance, by examining the mechanisms related to tumor-intrinsic properties, T-cell function, and tumor-immune cell interactions. We discuss current and future management of ICBT resistance, and consider crucial questions remaining in this field of acquired resistance to immune checkpoint blockade therapies.

16.
iScience ; 23(5): 101056, 2020 May 22.
Article in English | MEDLINE | ID: mdl-32344378

ABSTRACT

Immunotherapies are used as adjuvant therapies for cancers. However, knowledge of how traditional cancer treatments affect immunotherapies is limited. Using mouse models, we demonstrate that tumor-draining lymph nodes (TdLNs) are critical for tumor antigen-specific T cell response. However, removing TdLNs concurrently with established primary tumors did not affect the immune checkpoint blockade (ICB) response on localized secondary tumor due to immunotolerance in TdLNs and distribution of antigen-specific T cells in peripheral lymphatic organs. Notably, treatment response improved with sequential administration of 5-fluorouracil (5-FU) and ICB compared with concurrent administration of ICB with 5-FU. Immune profiling revealed that using 5-FU as induction treatment increased tumor visibility to immune cells, decreased immunosuppressive cells in the tumor microenvironment, and limited chemotherapy-induced T cell depletion. We show that the effect of traditional cytotoxic treatment, not TdLNs, influences immunotherapy response in localized secondary tumors. We postulate essential considerations for successful immunotherapy strategies in clinical conditions.

17.
Clin Drug Investig ; 39(4): 341-353, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30778885

ABSTRACT

Lung cancer is the most prevalent and deadly cancer worldwide. Immune checkpoint therapy, which targets regulatory pathways in T cells to boost anti-tumor immune response, has revolutionized lung cancer treatment paradigms. Inhibitors of the most established immune checkpoints such as programmed death-1 (PD-1)/PD-ligand 1 (PD-L1) have been approved by the US Food and Drug Administration in the management of lung cancer. Despite the pronounced survival benefits that have been seen with immune checkpoint inhibitors, not all lung cancer patients respond to single-agent immunotherapy due to the complexity of the immune microenvironment and tumor resistance. Alternative immune checkpoints beyond PD-1/PD-L1 must be sought so that more patients can benefit from immune checkpoint therapy. Additionally, novel combination strategies of immunotherapy and conventional treatments (e.g., chemotherapy, radiotherapy, and targeted therapy) have shown promise in some clinical trials. Meanwhile, identification of predictive biomarkers is pivotal in selecting eligible patients for immunotherapy and to guide individualized clinical decision-making. The future of immune checkpoint therapy in lung cancer is not devoid of challenges, and more prospective clinical studies are awaited to translate our understanding from bench to bedside.


Subject(s)
Antineoplastic Agents, Immunological/administration & dosage , Cell Cycle Checkpoints/drug effects , Drug Delivery Systems/trends , Lung Neoplasms/drug therapy , Animals , Cell Cycle Checkpoints/immunology , Forecasting , Humans , Immunotherapy/methods , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Receptor/metabolism , Prospective Studies
18.
Hum Pathol ; 77: 54-62, 2018 07.
Article in English | MEDLINE | ID: mdl-29634976

ABSTRACT

Synthesis of cytochrome c oxidase 2 (SCO2) and TP53-induced glycolysis and apoptosis regulator (TIGAR) are 2 p53-mediated proteins that can play a regulatory role in cancer energy metabolism. However, no study has examined the association of SCO2 and TIGAR with the prognosis of patients with lung adenocarcinoma (AC). In our study, the expression of SCO2 and TIGAR proteins in lung AC was detected, and the potential relation to prognosis was evaluated, aiming to take a further view of lung AC progression. Quantum dots-based immunofluorescence histochemistry staining was performed to observe the expression of p53, SCO2, and TIGAR in 75 specimens of lung AC. Of these, 51 (68.0%) showed high expression of SCO2, and 59 (78.7%) showed high expression of TIGAR. High TIGAR expression was significantly associated with a history of smoking (P = .017) and being male (P = .006). The correlation between high SCO2 expression and age also was significant (P = .042). Moreover, high TIGAR expression was positively correlated with high SCO2 expression (P = .019; rs = 0.271). High expression of the SCO2 and TIGAR proteins predicted poorer survival and a higher mortality rate (P = .024 and .030, respectively). High expression of SCO2 and TIGAR proteins is significantly associated with lung AC progression, suggesting their potential use as prognostic markers and therapeutic targets.


Subject(s)
Adenocarcinoma of Lung/metabolism , Apoptosis/physiology , Carrier Proteins/metabolism , Lung Neoplasms/metabolism , Mitochondrial Proteins/metabolism , Tumor Suppressor Protein p53/metabolism , Adult , Aged , Aged, 80 and over , Cell Line, Tumor , Electron Transport Complex IV/metabolism , Energy Metabolism/physiology , Female , Glycolysis , Humans , Male , Middle Aged , Molecular Chaperones
19.
Transl Res ; 196: 62-70, 2018 06.
Article in English | MEDLINE | ID: mdl-29518351

ABSTRACT

Immune checkpoint blockade therapy (ICBT) has resulted in extended overall survival for some patients with certain types of cancer, most prominently including colorectal cancer (CRC) associated with microsatellite instability (MSI). However, most patients with CRC whose phenotypes have microsatellite stability (MSS) are unresponsive to ICBT. In efforts to understand the responsiveness of CRC tumors to ICBT, genotypic and phenotypic signatures of CRC tumors are now being investigated. The MSI and MSS classification has been clinically validated as helpful in predicting response vs nonresponse to ICBT in patients with CRC. Other potential predictive markers include mutational and neoantigen loads, T-cell receptor diversity, and the immune score system, all of which have mechanistic connections to ICBT response. These novel predictive signatures could provide unprecedented insights into patients with CRC associated with MSS. Clinical trials or prospective cohort studies using standardized methodologies for biomarker quantification should be illuminating. Further validation of these novel predictive signatures will be essential to tailoring treatment of patients whose CRC is most likely to respond to ICBT.


Subject(s)
CTLA-4 Antigen/antagonists & inhibitors , Colorectal Neoplasms/drug therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Brain Neoplasms/complications , Colorectal Neoplasms/complications , Colorectal Neoplasms/genetics , Colorectal Neoplasms/immunology , DNA Damage , Genotype , Humans , Microsatellite Instability , Neoplastic Syndromes, Hereditary/complications , Phenotype
20.
Asian Pac J Cancer Prev ; 19(2): 401-406, 2018 Feb 26.
Article in English | MEDLINE | ID: mdl-29479989

ABSTRACT

Background: Lung cancer is the leading causes of cancer-related deaths around the world. Abnormal activation of the hedgehog (Hh) signaling pathway has been found to be involved in the occurrence, invasion, and metastasis of cancers. Autophagy also plays a significant role in the growth and metastasis of cancers. However, the correlation between the Hh signaling pathway and autophagy in small cell lung cancer (SCLC) is still poorly understood. This study aimed to investigate the significance of Hh signaling pathway and autophagy in SCLC. Materials and Methods: The expression of the Hh-induced transcriptional factor, glioma associated oncogene-1 (Gli-1) and the autophagy-related molecule caveolin-1 (Cav-1) and their clinical significance was performed to detect and assay by immunohistochemistry in tissue microarray including 70 patients with SCLC. Results: In our study, 47 (67.1%) patients had positive Gli-1 expression, 49 (70.0%) patients had positive Cav-1 expression, and 44 (62.9%) patients had negative fibroblastic Cav-1 expression. In SCLC, Gli-1 expression increased markedly, and was closely associated with decreased fibroblastic Cav-1 expression. Furthermore, we also found that Gli-1 expression was closely associated with increased Cav-1 expression. Conclusions: Our findings suggested that abnormal activation of the Hh signaling pathway is closely related to autophagy in SCLC. We envision that novel targets may come with the further investigation of Gli-1 and Cav-1 in carcinogenesis of SCLC.


Subject(s)
Biomarkers, Tumor/metabolism , Caveolin 1/metabolism , Lung Neoplasms/pathology , Neoplasm Recurrence, Local/pathology , Small Cell Lung Carcinoma/secondary , Zinc Finger Protein GLI1/metabolism , Adult , Aged , Female , Follow-Up Studies , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/metabolism , Lymphatic Metastasis , Male , Middle Aged , Neoplasm Invasiveness , Neoplasm Recurrence, Local/metabolism , Prognosis , Signal Transduction , Small Cell Lung Carcinoma/metabolism , Tissue Array Analysis , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...