Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Sci ; 96(9): 2424-35, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17588260

ABSTRACT

Phospholipids have been extensively evaluated as an anchor for both PEGylation and receptor-targeting in liposomal formulations. However, cholesterol, another important component in biomembranes, has not been fully investigated as an alternative anchor. In this study, the potential role of cholesterol for anchoring PEG and folate was investigated. Cholesterol derivatives were synthesized for PEGylation (mPEG-cholesterol) and folate receptor (FR) targeting (folate-PEG-cholesterol) and incorporated into the bilayer of FR-targeted liposomal doxorubicin. The colloidal stability of these cholesterol derivative-containing liposomes was superior to non-PEGylated liposomes, indicating that steric barrier provided by mPEG-cholesterol can efficiently inhibit aggregation of liposomes. FR-targeting activity of these liposomes was demonstrated by in vitro cell-binding studies on FR-overexpressing KB cells. In addition, in vivo circulation of cholesterol-anchored liposomes was prolonged compared to non-PEGylated liposomes. These studies suggest that cholesterol is a viable bilayer anchor for synthesis of PEGylated and FR-targeted liposomes.


Subject(s)
Carrier Proteins/drug effects , Cholesterol/chemistry , Lipid Bilayers , Polyethylene Glycols/chemistry , Receptors, Cell Surface/drug effects , Animals , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/chemistry , Delayed-Action Preparations , Doxorubicin/administration & dosage , Doxorubicin/chemistry , Drug Stability , Emulsions , Fluoresceins/chemistry , Folate Receptors, GPI-Anchored , Humans , Indicators and Reagents , KB Cells , Kinetics , Ligands , Liposomes , Male , Mice , Mice, Inbred BALB C , Microscopy, Electron, Transmission , Photons , Solubility , Spectrum Analysis
2.
Bioconjug Chem ; 17(5): 1141-50, 2006.
Article in English | MEDLINE | ID: mdl-16984121

ABSTRACT

Liposomes have been a main focus of tumor-selective boron delivery strategies in boron neutron capture therapy (BNCT), a binary method for the treatment of cancer that is based on the nuclear reaction between boron atoms and low-energy thermal neutrons. Three novel carboranyl cholesterol derivatives were prepared as lipid bilayer components for the construction of nontargeted and receptor-targeted boronated liposomes for BNCT. A major structural feature of these novel boronated cholesterol mimics is the replacement of the B and the C ring of cholesterol with a carborane cluster. Computational analyses indicated that all three boronated compounds have structural features and physicochemical properties that are very similar to those of cholesterol. One of the synthesized boronated cholesterol mimics was stably incorporated into non-, folate receptor (FR)-, and vascular endothelial growth factor receptor-2 (VEGFR-2)-targeted liposomes. No major differences were found in appearance, size distribution, and lamellarity between conventional dipalmitoylphosphatidylcholine (DPPC)/cholesterol liposomes, nontargeted, and FR-targeted liposomal formulations of this carboranyl cholesterol derivative. FR-targeted boronated liposomes were taken up extensively in FR overexpressing KB cells in vitro, and the uptake was effectively blocked in the presence of free folate. In contrast, a boronated cholesterol mimic incorporated into nontargeted liposomes showed significantly lower cellular uptake. There was no apparent in vitro cytotoxicity in FR overexpressing KB cells and VEGFR-2 overexpressing 293/KDR cells when these were incubated with boronated FR- and (VEGFR-2)-targeted liposomes, respectively, although the former accumulated extensively in KB cells and the latter effectively interacted with VEGFR-2 by causing autophosphorylation and protecting 293/KDR cells from SLT (Shiga-like toxin)-VEGF cytotoxicity.


Subject(s)
Boron Compounds/metabolism , Boron Neutron Capture Therapy/methods , Cholesterol , Liposomes/metabolism , Boron Compounds/chemistry , Cell Line , Cholesterol/chemistry , Cholesterol/metabolism , Humans , Liposomes/chemistry , Models, Molecular , Molecular Structure , Neoplasms/therapy , Particle Size , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism
3.
Adv Drug Deliv Rev ; 56(8): 1193-204, 2004 Apr 29.
Article in English | MEDLINE | ID: mdl-15094215

ABSTRACT

Gene therapy is a promising approach for the treatment of cancer. The main obstacle for the clinical application of cancer gene therapy is the lack of gene transfer vectors that are safe, efficacious, and tumor-selective. In recent years, targeted gene delivery through cellular receptors, using either viral or nonviral vectors, is emerging as a novel approach to enhance the efficacy of tumor-selective gene delivery. The folate receptor (FR), which is absent in most normal tissues and elevated in over 90% of ovarian carcinomas and at a high frequency in other human malignancies, is an attractive tumor-selective target. FR-targeted vectors include folate-derivatized adenoviruses, cationic polymers, cationic liposomes, and pH-sensitive liposomes. In addition, FR-targeted liposomes have been evaluated for the targeted delivery of antisense oligodeoxyribonucleotides (ODNs). These vectors have invariably shown impressive FR-selectivity in cell culture assays and, in addition, shown promising tumor-specific gene transfer activity in several in vivo models. There are important theoretical advantages for FR-targeted vectors over traditional non-targeted vectors in therapeutic gene and oligodeoxyribonucleotides delivery in vivo to cancer cells. Further preclinical characterization of these vectors is, therefore, warranted to determine their potential utility in cancer gene therapy.


Subject(s)
Carrier Proteins , Drug Delivery Systems/methods , Gene Transfer Techniques , Oligodeoxyribonucleotides, Antisense/administration & dosage , Receptors, Cell Surface , Animals , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Line, Tumor , Folate Receptors, GPI-Anchored , Humans , Oligodeoxyribonucleotides, Antisense/genetics , Oligodeoxyribonucleotides, Antisense/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...