Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Food Chem ; 453: 139673, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38772308

ABSTRACT

Herein, the nanolignin-containing cellulose nanofibrils (LCNF)-enabled ratiometric fluorescent bio-nanocomposite film is developed. Interestingly, the inclusion of LCNF in the cellulose-based film enhances the detecting performance of food freshness, such as high sensitivity to biogenic amines (BAs) (limit of detection (LOD) of up to 1.83 ppm) and ultrahigh discernible fluorescence color difference (ΔE = 113.11). The underlying mechanisms are the fluorescence resonance energy transfer (FRET), π - π interaction, and cation - π interaction between LCNF and fluorescein isothiocyanate (FITC), as well as the increased hydrophobicity due to lignin, which increases the interactions of amines with FITC. Its color stability (up to 28 days) and mechanical property (49.4 Mpa) are simultaneously improved. Furthermore, a smartphone based detecting platform is developed to achieve access to food safety. This work presents a novel technology, which can have a great potential in the field of food packaging and safety.


Subject(s)
Cellulose , Food Packaging , Nanocomposites , Nanofibers , Cellulose/chemistry , Food Packaging/instrumentation , Nanofibers/chemistry , Nanocomposites/chemistry , Fluorescence Resonance Energy Transfer , Biogenic Amines/analysis , Biogenic Amines/chemistry , Fluorescence
2.
Bioresour Technol ; 278: 464-467, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30691955

ABSTRACT

The effect of sodium formate (SF), calcium formate (CF) and nickel formate (NF) as additives on analytical pyrolysis performance of kraft lignin was conducted. The results showed that these formates promoted the releasing of volatiles, leading to the rapid degradation of kraft lignin. High relative content of monophenols (53.77%), especially of guaiacol (23.65%), were achieved from the pyrolysis of pure lignin. The relative content of guaiacol was dramatically decreased after the adding of formates in kraft lignin. The relative content of polyphenols such as 3-methylcatechol and 4-methylcatechol reached to 16.97%, 16.23% and 21.95% with the formates of SF, CF and NF, respectively. The NF showed the highest selectivity of polyphenols and hydrocarbons. The increase of polyphenols and hydrocarbons from NF was the synergetic effect of the hydrogen radical reaction from the formic functional groups under the catalysis of Ni and/or NiO produced from the NF pyrolysis process.


Subject(s)
Catechols/chemistry , Formates/chemistry , Lignin/chemistry , Catalysis , Pyrolysis
SELECTION OF CITATIONS
SEARCH DETAIL