Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 713
Filter
1.
Adv Sci (Weinh) ; : e2401629, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38721863

ABSTRACT

Low-temperature rechargeable aqueous zinc metal batteries (AZMBs) as highly promising candidates for energy storage are largely hindered by huge desolvation energy barriers and depressive Zn2+ migration kinetics. In this work, a superfast zincophilic ion conductor of layered zinc silicate nanosheet (LZS) is constructed on a metallic Zn surface, as an artificial layer and ion diffusion accelerator. The experimental and simulation results reveal the zincophilic ability and layer structure of LZS not only promote the desolvation kinetics of [Zn(H2O)6]2+ but also accelerate the Zn2+ transport kinetics across the anode/electrolyte interface, guiding uniform Zn deposition. Benefiting from these features, the LZS-modified Zn anodes showcase long-time stability (over 3300 h) and high Coulombic efficiency with ≈99.8% at 2 mA cm-2, respectively. Even reducing the environment temperature down to 0 °C, ultralong cycling stability up to 3600 h and a distinguished rate performance are realized. Consequently, the assembled Zn@LZS//V2O5-x full cells deliver superior cyclic stability (344.5 mAh g-1 after 200 cycles at 1 A g-1) and rate capability (285.3 mAh g-1 at 10 A g-1) together with a low self-discharge rate, highlighting the bright future of low-temperature AZMBs.

2.
Article in English | MEDLINE | ID: mdl-38722549

ABSTRACT

Bifidobacterium longum (B. longum) is a beneficial anaerobic bacteria that may improve cardiovascular disease (CVD). We studied B. longum L556, isolated from healthy human feces, in coronary heart disease (CHD) patients through anaerobic fermentation in vitro. Results showed that B. longum L556 increased Lactobacillus, Faecalibacterium, Prevotella, and Alistipes, while reducing Firmicutes to Bacteroidetes, Eggerthella, Veillonella, Holdemanella, and Erysipelotrichaceae_UCG-003 in the gut microbiota of CHD patients. B. longum L556 also enhanced anti-inflammatory effects by modulating gut microbiota and metabolites like SCFAs. Additionally, it regulated lipid and amino acid metabolism in fermentation metabolites from the CHD group. These findings suggest that B. longum L556 has potential for improving CHD by modulating the intestinal microbiota, promoting SCFA production, and regulating lipid metabolism and inflammation.

3.
Mol Pharmacol ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38719474

ABSTRACT

DNA topoisomerase IIα (TOP2α, 170kDa, TOP2α/170) is an essential enzyme for proper chromosome dysjunction by producing transient DNA double-stranded breaks and is a significant target for DNA damage stabilizing anti-cancer agents such as etoposide. Therapeutic effects of TOP2α poisons can be limited due to acquired drug resistance. We previously demonstrated decreased TOP2α/170 levels in an etoposide-resistant human leukemia K562 subline, designated K/VP.5, accompanied by increased expression of a C-terminal truncated TOP2α isoform (90 kDa, TOP2α/90) which heterodimerized with TOP2α/170 and was a determinant of resistance by exhibiting dominant-negative effects against etoposide activity. Based on 3'-Rapid Amplification of cDNA Ends (3'-RACE), we confirmed TOP2α/90 as the translation product of a TOP2α mRNA in which a cryptic polyadenylation site (PAS) harbored in intron 19 (I19) was utilized. We hypothesized that resultant intronic polyadenylation (IPA) can would be attenuated by blocking or mutating the I19 PAS thereby circumventing acquired drug resistance. An antisense morpholino oligonucleotide (AMO) was used to hybridize/block the PAS in TOP2α pre-mRNA in K/VP.5 cells, resulting in decreased TOP2α/90 mRNA/protein levels in K/VP.5 cells and partially circumventing drug resistance. Subsequently, CRISPR/Cas9 homology-directed repair (HDR) was used to mutate the cryptic I19 PAS (AATAAA-->ACCCAA) to prevent IPA. Gene-edited clones exhibited increased TOP2α/170 and decreased TOP2α/90 mRNA/protein and demonstrated restored sensitivity to etoposide and other TOP2α-targeted drugs. Together, results indicated that blocking/mutating a cryptic I19 PAS in K/VP.5 cells reduced IPA and restored sensitivity to TOP2α-targeting drugs. Significance Statement Results presented here indicate that CRISPR/Cas9 gene editing of a cryptic polyadenylation site (PAS) within I19 of the TOP2α gene results in reversal of acquired resistance to etoposide and other TOP2-targeted drugs. An antisense morpholino oligonucleotide (AMO) targeting the PAS also partially circumvented resistance. Results demonstrate the importance of intronic polyadenylation (IPA) in acquired drug resistance and points to tractable strategies to overcome this form of resistance to TOP2-targeted agents.

4.
Food Chem ; 453: 139673, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38772308

ABSTRACT

Herein, the nanolignin-containing cellulose nanofibrils (LCNF)-enabled ratiometric fluorescent bio-nanocomposite film is developed. Interestingly, the inclusion of LCNF in the cellulose-based film enhances the detecting performance of food freshness, such as high sensitivity to biogenic amines (BAs) (limit of detection (LOD) of up to 1.83 ppm) and ultrahigh discernible fluorescence color difference (ΔE = 113.11). The underlying mechanisms are the fluorescence resonance energy transfer (FRET), π - π interaction, and cation - π interaction between LCNF and fluorescein isothiocyanate (FITC), as well as the increased hydrophobicity due to lignin, which increases the interactions of amines with FITC. Its color stability (up to 28 days) and mechanical property (49.4 Mpa) are simultaneously improved. Furthermore, a smartphone based detecting platform is developed to achieve access to food safety. This work presents a novel technology, which can have a great potential in the field of food packaging and safety.

5.
Surv Ophthalmol ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38782129

ABSTRACT

Ocular damage in systemic lupus erythematosus (SLE) may cause insidious visual impairment, but its clinical features and the risk of hydroxychloroquine (HCQ)-related complications are still controversial. We performed a meta-analysis to evaluate ocular damage in SLE, the correlation between eye and systemic involvement, and the ocular side effects of treatment. The database PubMed, Embase, and Ovid were used for literature from reception to July, 2023, and the calculation was carried out with R. About 48,693 patients from 66 studies were included. The results indicated that ocular damage in SLE was insidious, appearing in 28% of patients with no complaints. The most common symptoms and manifestations were dry eye (30%) and keratoconjunctivitis sicca (26%). Retinopathy was detected in 10% of patients and was related to antiphospholipid antibodies (25% versus 8%). The proportion of retinopathy also significantly increased in patients with lupus nephropathy or neuropsychiatric systemic lupus erythematosus (risk ratio of 2.29 and 1.95, respectively). HCQ was used in 82% of patients, of which 4% suffered from ocular toxicity. HCQ-related retinopathy was dose-dependent. Dosage below 5mg/kg/d was relatively effective and safe for long-term use, while routine examination was recommended.

6.
BMC Cancer ; 24(1): 623, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778252

ABSTRACT

We provided an overview which evaluated the diagnostic performance of circulation EV biomarkers for CRC from PubMed, Medline, and Web of Science until 21 August 2022.Weidentified 48 studies that involved 7727 participants and evaluated 162 plasma/serum individual EV biomarkers including 117 RNAs and 45 proteins, as well as 45 EV biomarker panels for CRC detection. 12 studies evaluated the diagnostic performance of EV biomarkers for early CRC. The summarized sensitivity, specificity, and AUC value of individual EV RNAs and EV RNA panels were 76%, 75%, 0.87 and 82%, 79% and 0.90, respectively. Meanwhile, those of individual EV proteins and EV protein panels were 85%, 84%, 0.92 and 87%, 83%, 0.92, respectively. These results indicated that EV biomarker panels revealed superior diagnostic performance than the corresponding individual biomarkers. In early CRC, EV biomarkers showed available diagnostic value with the sensitivity, specificity, and AUC value of 80%, 75%, and 0.89.In subgroup analyses, EV miRNAs and LncRNAs held similar diagnostic value with the sensitivity, specificity and AUC value of 75%, 78%, 0.90 and 79%, 72%, 0.83, which was highly consistent with the whole EV RNAs. Significantly, the diagnostic values of EV miRNAs in plasma were marginally higher than those based on serum. In detail, the sensitivity, specificity, and AUC values were 79%, 81%, and 0.92 in plasma, as well as 74%, 77%, and 0.88 in serum, respectively. Therefore, circulation EV biomarkers could be considered as a promising biomarker for the early detection of CRC.


Subject(s)
Biomarkers, Tumor , Colorectal Neoplasms , Extracellular Vesicles , Humans , Colorectal Neoplasms/blood , Colorectal Neoplasms/diagnosis , Biomarkers, Tumor/blood , Extracellular Vesicles/metabolism , Early Detection of Cancer/methods , MicroRNAs/blood , Sensitivity and Specificity , RNA, Long Noncoding/blood
7.
Int J Pharm X ; 7: 100248, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38689600

ABSTRACT

Disulfiram (DSF) is a second-line drug for the clinical treatment of alcoholism and has long been proven to be safe for use in clinical practice. In recent years, researchers have discovered the cancer-killing activity of DSF, which is highly dependent on the presence of metal ions, particularly copper ions. Additionally, free DSF is highly unstable and easily degraded within few minutes in blood circulation. Therefore, an ideal DSF formulation should facilitate the co-delivery of metal ions and safeguard the DSF throughout its biological journey before reaching the targeted site. Extensive research have proved that nanotechnology based formulations can effectively realize this goal by strategic encapsulation therapeutic agents within nanoparticle. To be more specific, this is accomplished through precise delivery, coordinated release of metal ions at the tumor site, thereby amplifying its cytotoxic potential. Beyond traditional co-loading techniques, innovative approaches such as DSF-metal complex and metal nanomaterials, have also demonstrated promising results at the animal model stage. This review aims to elucidate the anticancer mechanism associated with DSF and its reliance on metal ions, as well as to provide a comprehensive overview of recent advances in the arena of nanomedicine based co-delivery strategies for DSF and metal ion in the context of cancer therapy.

8.
Virulence ; 15(1): 2350904, 2024 12.
Article in English | MEDLINE | ID: mdl-38725098

ABSTRACT

Fusobacterium nucleatum (F. nucleatum) is closely correlated with tumorigenesis in colorectal cancer (CRC). We aimed to investigate the effects of host norepinephrine on the carcinogenicity of F. nucleatum in CRC and reveal the underlying mechanism. The results revealed that both norepinephrine and bacterial quorum sensing (QS) molecule auto-inducer-2 (AI-2) were positively associated with the progression of F. nucleatum related CRC (p < 0.01). In vitro studies, norepinephrine induced upregulation of QS-associated genes and promoted the virulence and proliferation of F. nucleatum. Moreover, chronic stress significantly increased the colon tumour burden of ApcMin/+ mice infected with F. nucleatum (p < 0.01), which was decreased by a catecholamine inhibitor (p < 0.001). Our findings suggest that stress-induced norepinephrine may promote the progression of F. nucleatum related CRC via bacterial QS signalling. These preliminary data provide a novel strategy for the management of pathogenic bacteria by targeting host hormones-bacterial QS inter-kingdom signalling.


Subject(s)
Colorectal Neoplasms , Fusobacterium nucleatum , Norepinephrine , Quorum Sensing , Signal Transduction , Quorum Sensing/drug effects , Fusobacterium nucleatum/pathogenicity , Fusobacterium nucleatum/drug effects , Fusobacterium nucleatum/physiology , Animals , Colorectal Neoplasms/microbiology , Norepinephrine/pharmacology , Mice , Humans , Disease Progression , Fusobacterium Infections/microbiology , Virulence , Homoserine/analogs & derivatives , Homoserine/metabolism , Mice, Inbred C57BL , Male , Lactones
9.
Stem Cell Reports ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38759644

ABSTRACT

Human brain organoid models have emerged as a promising tool for studying human brain development and function. These models preserve human genetics and recapitulate some aspects of human brain development, while facilitating manipulation in an in vitro setting. Despite their potential to transform biology and medicine, concerns persist about their fidelity. To fully harness their potential, it is imperative to establish reliable analytic methods, ensuring rigor and reproducibility. Here, we review current analytical platforms used to characterize human forebrain cortical organoids, highlight challenges, and propose recommendations for future studies to achieve greater precision and uniformity across laboratories.

10.
Front Mol Biosci ; 11: 1341290, 2024.
Article in English | MEDLINE | ID: mdl-38698772

ABSTRACT

Objective: This study aimed to explore the risk factors, metabolic characteristics, and potential biomarkers of mild cognitive impairment in type 2 diabetes mellitus (T2DM-MCI) and to provide potential evidence for the diagnosis, prevention, and treatment of mild cognitive impairment (MCI) in patients with type 2 diabetes mellitus (T2DM). Methods: A total of 103 patients with T2DM were recruited from the Endocrinology Department of The Second Affiliated Hospital of Dalian Medical University for inclusion in the study. The Montreal Cognitive Assessment (MoCA) was utilized to evaluate the cognitive functioning of all patients. Among them, 50 patients were categorized into the T2DM-MCI group (MoCA score < 26 points), while 53 subjects were classified into the T2DM without cognitive impairment (T2DM-NCI) group (MoCA score ≥ 26 points). Serum samples were collected from the subjects, and metabolomics profiling data were generated by Ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS). These groups were analyzed to investigate the differences in expression of small molecule metabolites, metabolic pathways, and potential specific biomarkers. Results: Comparison between the T2DM-MCI group and T2DM-NCI group revealed significant differences in years of education, history of insulin application, insulin resistance index, insulin-like growth factor-binding protein-3 (IGFBP-3), and creatinine levels. Further binary logistic regression analysis of the variables indicated that low educational level and low serum IGFBP-3 were independent risk factor for T2DM-MCI. Metabolomics analysis revealed that differential expression of 10 metabolites between the T2DM-MCI group and T2DM-NCI group (p < 0.05 and FDR<0.05, VIP>1.5). Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment pathway analysis revealed that fatty acid degradation was the most significant pathway. Receiver operating characteristic (ROC) analysis shows that lysophosphatidylcholine (LPC) 18:0 exhibited greater diagnostic efficiency. Conclusion: This study revealed that a shorter duration of education and lower serum IGFBP-3 levels are independent risk factors for T2DM-MCI. Serum metabolites were found to be altered in both T2DM-MCI and T2DM-NCI groups. T2DM patients with or without MCI can be distinguished by LPC 18:0. Abnormal lipid metabolism plays a significant role in the development of MCI in T2DM patients.

11.
Sensors (Basel) ; 24(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38793829

ABSTRACT

In this review, we meticulously analyze and consolidate various techniques used for measuring the junction temperature of light-emitting diodes (LEDs) by examining recent advancements in the field as reported in the literature. We initiate our exploration by delineating the evolution of LED technology and underscore the criticality of junction temperature detection. Subsequently, we delve into two key facets of LED junction temperature assessment: steady-state and transient measurements. Beginning with an examination of innovations in steady-state junction temperature detection, we cover a spectrum of approaches ranging from traditional one-dimensional methods to more advanced three-dimensional techniques. These include micro-thermocouple, liquid crystal thermography (LCT), temperature sensitive optical parameters (TSOPs), and infrared (IR) thermography methods. We provide a comprehensive summary of the contributions made by researchers in this domain, while also elucidating the merits and demerits of each method. Transitioning to transient detection, we offer a detailed overview of various techniques such as the improved T3ster method, an enhanced one-dimensional continuous rectangular wave method (CRWM), and thermal reflection imaging. Additionally, we introduce novel methods leveraging high-speed camera technology and reflected light intensity (h-SCRLI), as well as micro high-speed transient imaging based on reflected light (µ_HSTI). Finally, we provide a critical appraisal of the advantages and limitations inherent in several transient detection methods and offer prognostications on future developments in this burgeoning field.

12.
Sci Data ; 11(1): 543, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802420

ABSTRACT

Image-based artificial intelligence (AI) systems stand as the major modality for evaluating ophthalmic conditions. However, most of the currently available AI systems are designed for experimental research using single-central datasets. Most of them fell short of application in real-world clinical settings. In this study, we collected a dataset of 1,099 fundus images in both normal and pathologic eyes from 483 premature infants for intelligent retinopathy of prematurity (ROP) system development and validation. Dataset diversity was visualized with a spatial scatter plot. Image classification was conducted by three annotators. To the best of our knowledge, this is one of the largest fundus datasets on ROP, and we believe it is conducive to the real-world application of AI systems.


Subject(s)
Artificial Intelligence , Fundus Oculi , Infant, Premature , Retinopathy of Prematurity , Retinopathy of Prematurity/diagnostic imaging , Humans , Infant, Newborn
13.
Toxicol Appl Pharmacol ; 487: 116960, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38735592

ABSTRACT

BACKGROUND: The intestinal metabolites are involved in the initiation, progression and metastasis of colorectal cancer (CRC). They are a potential source of agents for cancer therapy. Our previous study identified altered faecal metabolites between CRC patients and healthy volunteers. However, no specific metabolite was clearly illustrated for CRC therapy. RESULTS: We found that the level of xylulose was lower in the stools of CRC patients than in those of healthy volunteers. Xylulose inhibited cell growth without affecting the cell cycle by inducing apoptosis in CRC cells, which was evidenced by increased expression of the proapoptotic proteins C-PARP and C-Caspase3 and decreased expression of the antiapoptotic protein BCL-2 in CRC cells. Mechanistically, xylulose reduced the activity of the MAPK signalling pathway, represented by reduced phosphorylation of JNK, ERK, and P38. Furthermore, an ALI model was used to show the tumour killing ability of xylulose on human CRC spheres, as well as human colorectal adenoma (AD) spheres. CONCLUSION: Xylulose inhibits CRC growth by inducing apoptosis through attenuation of the MAPK signalling pathway. These results suggest that xylulose may serve as an effective agent for CRC therapy.

14.
BMC Vet Res ; 20(1): 187, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730463

ABSTRACT

BACKGROUND: Porcine epidemic diarrhea virus (PEDV), a type of coronavirus, is one of the main pathogens that can infect pigs of all ages. It causes diarrhea and acute death of newborn piglets, resulting in massive economic losses to the worldwide swine industry. While vaccination remains the primary approach in combating PEDV, it often fails to address all the challenges posed by the infection, particularly in light of the emergence of evolving mutant strains. Therefore, there is a critical need to identify potent antiviral drugs that can effectively safeguard pigs against PEDV infection. RESULTS: In this study, the antiviral efficacy of SP2509, a specific antagonist of Lysine-specific demethylase 1(LSD1), was evaluated in vitro. The RT-qPCR, Western blot, TCID50, and IFA showed that at a concentration of 1µmol/L, SP2509 significantly inhibited PEDV infection. Additionally, viral life cycle assays showed that SP2509 operates by impeding PEDV internalization and replication rather than attachment and release. Regarding mechanism, in Huh-7 cells, knockdowns LSD1 can suppress PEDV replication. This indicated that the inhibition effect of SP2509 on PEDV largely depends on the activity of its target protein, LSD1. CONCLUSION: Our results in vitro show that SP2509 can inhibit PEDV infection during the internalization and replication stage and revealed a role of LSD1 as a restriction factor for PEDV. These imply that LSD1 might be a target for interfering with the viral infection, and SP2509 could be developed as an effective anti-PEDV agent.


Subject(s)
Antiviral Agents , Histone Demethylases , Porcine epidemic diarrhea virus , Virus Replication , Porcine epidemic diarrhea virus/drug effects , Animals , Antiviral Agents/pharmacology , Virus Replication/drug effects , Histone Demethylases/antagonists & inhibitors , Swine , Chlorocebus aethiops , Swine Diseases/virology , Swine Diseases/drug therapy , Coronavirus Infections/veterinary , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Vero Cells
15.
Anal Chem ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38804325

ABSTRACT

A high-sensitivity fiber-optic photoacoustic (PA) gas microsensor is demonstrated with dual enhancement based on acoustics and detection. Due to the characteristic of small size, a Helmholtz resonator is integrated into a miniature PA sensor. The acoustically amplified PA signal is detected by a high-sensitivity fiber Fabry-Perot (F-P) interferometric cantilever. The first-order resonant frequencies of the interferometric cantilever and Helmholtz resonator are matched by subtle adjustments. The weak PA signal is significantly enhanced in a volume of only 0.35 mL, which breaks the volume limitation of the resonance modes in traditional PA sensing systems. To improve the resolution of the microsensor, a white light interferometry (WLI)-based spectral demodulation algorithm is utilized. The experimental results indicate that the minimum detection limit of acetylene (C2H2) drops to about 15 ppb with an averaging time of 100 s, corresponding to the normalized noise equivalent absorption (NNEA) coefficient of 2.7 × 10-9 W·cm-1·Hz-1/2. The dual resonance enhanced fiber-optic PA gas microsensor has the merits of high sensitivity, intrinsic safety, and compact structure.

16.
Eur J Oncol Nurs ; 70: 102622, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38795443

ABSTRACT

PURPOSE: To explore the relationship between dyadic coping and family resistance in colorectal cancer patients and their spouses. METHODS: 178 pairs of colorectal cancer patients and their spouses hospitalized in a three tertiary hospital in Changsha were selected from July 2021 to March 2022. The Family Resilience Assessment Scale and the Dyadic Coping Inventory were used to investigate, which relationship was analyzed by APIM. RESULTS: The total score of patients' dyadic coping was 121.51 ± 16.8, and spouses' score was 123.72 ± 16.6. The total score of family resilience was 176.42 ± 16.0, and spouses' score was 182.72 ± 17.03. There was a significant positive relationship between dyadic coping and family resistance of colorectal cancer patients and their spouses (r > 0.7, P < 0.001). The positive dyadic coping of colorectal cancer patients and their spouses had a positive effect on their own and their spouses' family resilience and the effect was the same. The negative dyadic coping of colorectal cancer patients and their spouses had a negative impact on their own family resilience, and the overall model showed a subject pattern. CONCLUSIONS: The level of family resilience of colorectal cancer patients and their spouses was affected by the level of dyadic coping. Medical workers should regard patients and their spouses as a whole and formulate mutually supportive coping strategies with family as the center, so as to increase positive coping behavior and enhance their family's ability to cope with cancer.

17.
Hepatol Int ; 18(3): 904-916, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38565833

ABSTRACT

BACKGROUND: Evidence has proven that liver fibrosis or even cirrhosis can be reversed by anti-HBV treatment. However, the difference of fibrosis regression rates in short-term and long-term antiviral therapy remain unclear. Therefore, we aimed to identify the dynamic changes in fibrosis regression rate in patients with three-time liver biopsies during 5 years antiviral therapy. METHODS: CHB patients with three times of liver biopsies (baseline, after 1.5-year and 5-year antiviral therapy) from a prospective cohort were enrolled. All patients were biopsy-proved Ishak stage ≥ 3 at baseline (n = 92). Fibrosis regression was defined as Ishak stage decreased ≥ 1 or predominantly regressive categorized by P-I-R score. RESULTS: Totals of 65.2% (60/92) and 80.4% (74/92) patients attained fibrosis regression after 1.5-year and 5-year therapy, respectively. Median HBV DNA level declined from 6.5 log IU/ml (baseline) to 0 log IU/ml (1.5 years and 5 years, P < 0.001). The mean level of Ishak fibrosis stage in all patients decreased from stage 4.1 (baseline) to 3.7 (1.5 years) then 3.2 (5 years). Fibrosis regression rates were 0.27 stage/year between baseline to year 1.5 and 0.14 stage/year between year 1.5 and year 5. Furthermore, for patients who attained fibrosis regression after 5-year antiviral therapy, the two-phase regression rates were 0.39 stage/year (0 year-1.5 years) and 0.20 stage/year (1.5 years-5 years). This two-phase feature of regression rate was further confirmed by fully-quantification assessment of liver fibrosis based on SHG/TPEF. CONCLUSION: During the 5 years of long-term antiviral treatment, liver fibrosis rapidly regresses in the first 1.5 years before slowing down in the following 3.5 years.


Subject(s)
Antiviral Agents , Hepatitis B, Chronic , Liver Cirrhosis , Humans , Liver Cirrhosis/pathology , Liver Cirrhosis/virology , Liver Cirrhosis/drug therapy , Antiviral Agents/therapeutic use , Male , Female , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/pathology , Hepatitis B, Chronic/complications , Biopsy/methods , Middle Aged , Adult , Prospective Studies , Liver/pathology , DNA, Viral/analysis , DNA, Viral/blood , Hepatitis B virus/genetics , Treatment Outcome
18.
Virol Sin ; 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38588947

ABSTRACT

African swine fever virus (ASFV) poses a significant threat to the global swine industry. Currently, there are no effective vaccines or treatments available to combat ASFV infection in pigs. The primary means of controlling the spread of the disease is through rapid detection and subsequent elimination of infected pig. Recently, a lower virulent ASFV isolate with a deleted EP402R gene (CD2v-deleted) has been reported in China, which further complicates the control of ASFV infection in pig farms. Furthermore, an EP402R-deleted ASFV variant has been developed as a potential live attenuated vaccine candidate strain. Therefore, it is crucial to develop detection methods that can distinguish wild-type and EP402R-deleted ASFV infections. In this study, two recombinant ASFV-p72 and -CD2v proteins were expressed using a prokaryotic system and used to immunize Bactrian camels. Subsequently, eight nanobodies against ASFV-p72 and ten nanobodies against ASFV-CD2v were screened. Following the production of these nanobodies with horse radish peroxidase (HRP) fusion proteins, the ASFV-p72-Nb2-HRP and ASFV-CD2v-Nb22-HRP fusions were selected for the development of two competitive ELISAs (cELISAs) to detect anti-ASFV antibodies. The two cELISAs exhibited high sensitivity, good specificity, repeatability, and stability. The coincidence rate between the two cELISAs and commercial ELISA kits was 98.6% and 97.6%, respectively. Collectively, the two cELISA for detecting antibodies against ASFV demonstrated ease of operation, a low cost, and a simple production process. The two cELISAs could determine whether pigs were infected with wild-type or CD2v-deleted ASFV, and could play an important role in monitoring ASFV infections in pig farms.

19.
Waste Manag ; 181: 34-43, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38581750

ABSTRACT

The main disposal method for municipal solid waste (MSW), including the growing worldwide volumes of kitchen waste, involves transport to landfills. Because kitchen waste is mainly composed of organic matter and has a high moisture content, large amounts of leachate and landfill gas are generated when it is sent to landfills. Therefore, rapid waste stabilization is essential. In this study, four semi-aerobic bioreactors (named NS, SS, MS, and LS) were established with void fractions of 33.76%, 39.84%, 44.62%, and 41.31%, respectively. The results showed that the void fractions of landfill directly affected the gas flow path. When the landfill void fraction was small (e.g., NS), most airflow traveled directly through the pipeline and minimal airflow entered the waste layer. When the landfill void fraction was large (e.g., MS), air easily entered the waste layer and some air flowed into the gas vent with the landfill gas. As the reaction proceeded, the void fraction gradually decreased due to gravity-induced sedimentation. During the water addition experiment, the voids were occupied by water, leading to formation of an anaerobic area. Among the four bioreactors, only MS had negligible formation of an anaerobic zone in the center. Methane (CH4) generation was detected only at the connection between the gas vent and the leachate collection pipe. A larger void fraction led to formation of a smaller anaerobic zone. The ratio of air flowing in pipeline was lowest in MS. These results indicated that a large void fraction promotes the decomposition of organic matter.


Subject(s)
Bioreactors , Refuse Disposal , Waste Disposal Facilities , Refuse Disposal/methods , Aerobiosis , Solid Waste/analysis
20.
Chemistry ; : e202400333, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639068

ABSTRACT

The selective hydrogenation of furfural (FFA) to furfuryl alcohol (FA) is regarded as attractive transformation to achieve the sustainable synthesis of value-added chemicals from biomass resources. However, the conventional supported catalysts are significantly restricted by their narrow pore size, ununiform dispersion and easy leaching or aggregation of catalytic sites. Herein, we designed hollow UiO-66-NH2 as the support to encapsulate Pd nanoparticles (Pd@H-UiO-66-NH2) to achieve the highly active and selective conversion of FFA to FA. Benefiting from the void-confinement effect and substrate enrichment of hollow structure, as well as the surface wrinkles, the as-prepared catalyst Pd@H-UiO-66-NH2 exhibited 96.8 % conversion of FFA with satisfactory selectivity reaching up to 92.4 % at 80 °C, 0.5 MPa H2 in isopropanol solvent within 6 h. More importantly, as-prepared Pd@H-UiO-66-NH2 catalyst exhibited excellent long-term stability, as well as good universality toward a series of hydrogenation of unsaturated hydrocarbons.

SELECTION OF CITATIONS
SEARCH DETAIL
...