Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Publication year range
1.
Food Chem Toxicol ; 176: 113784, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37059385

ABSTRACT

Acrolein (ACR), a highly toxic α,ß-unsaturated aldehyde, is considered to be a common mediator behind the reproductive injury induced by various factors. However, the understanding of its reproductive toxicity and prevention in reproductive system is limited. Given that Sertoli cells provide the first-line defense against various toxicants and that dysfunction of Sertoli cell causes impaired spermatogenesis, we, therefore, examined ACR cytotoxicity in Sertoli cells and tested whether hydrogen sulfide (H2S), a gaseous mediator with potent antioxidative actions, could have a protective effect. Exposure of Sertoli cells to ACR led to cell injury, as indicated by reactive oxygen species (ROS) generation, protein oxidation, P38 activation and ultimately cell death that was prevented by antioxidant N-acetylcysteine (NAC). Further studies revealed that ACR cytotoxicity on Sertoli cells was significantly exacerbated by the inhibition of H2S-synthesizing enzyme cystathionine γ-lyase (CSE), while significantly suppressed by H2S donor Sodium hydrosulfide (NaHS). It was also attenuated by Tanshinone IIA (Tan IIA), an active ingredient of Danshen that stimulated H2S production in Sertoli cells. Apart from Sertoli cells, H2S also protected the cultured germ cells from ACR-initiated cell death. Collectively, our study characterized H2S as endogenous defensive mechanism against ACR in Sertoli cells and germ cells. This property of H2S could be used to prevent and treat ACR-related reproductive injury.


Subject(s)
Hydrogen Sulfide , Male , Humans , Hydrogen Sulfide/pharmacology , Hydrogen Sulfide/metabolism , Sertoli Cells/metabolism , Acrolein/toxicity , Sulfides/pharmacology , Antioxidants/pharmacology
2.
Theriogenology ; 110: 1-7, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29331495

ABSTRACT

It has been reported that BCL2L10 is abundantly and specifically expressed in adult human and mouse oocytes and played a very important role in oocytes maturation and early embryonic development. This study is to investigate the expression pattern of BCL2L10 in buffalo ovaries and its effect on the in vitro maturation of buffalo oocytes, so as to dissect mechanism of oocytes maturation and provide theoretical guidance for improvement of the in vitro maturation of buffalo oocytes. The results showed that BCL2L10 gene was enriched in ovary and the expression of BCL2L10 was oocyte specific and up-regulated during oocyte maturation. BCL2L10 protein and mRNA were detectable in buffalo early embryos, upregulated at 2-cell to 8-cell stages and down-regulated in the later stages. Knockdown of BCL2L10 by RNA interference resulted in a significant decrease in the maturation rate (33.5%) and cleavage rate (37.52%) of buffalo oocytes coupled with up-regulation of apoptosis-related gene Caspase-9. We concluded that BCL2L10 is a candidate associated with buffalo oocyte maturation.


Subject(s)
Buffaloes/physiology , Oocytes/physiology , Oogenesis/genetics , Proto-Oncogene Proteins c-bcl-2/physiology , Animals , Buffaloes/genetics , Cells, Cultured , Embryo Culture Techniques/veterinary , Embryo, Mammalian , Embryonic Development/physiology , Female , Fertilization in Vitro/veterinary , In Vitro Oocyte Maturation Techniques , Male , Proto-Oncogene Proteins c-bcl-2/genetics
3.
Ying Yong Sheng Tai Xue Bao ; 28(3): 885-893, 2017 Mar 18.
Article in Chinese | MEDLINE | ID: mdl-29741016

ABSTRACT

Photosynthesis characteristics of winter wheat under different tillage practices during fil-ling stage are vital for dry matter accumulation, transfer, and yield development. A field experiment, including no-till with residue removal (NT), no-till with residue retention (NTS), rotary tillage with residue removal (RT), rotary tillage with residue retained (RTS), subsoiling with residue removal (DT), subsoiling with residue retained (DTS), plow tillage with residue removal (CT), and plow tillage with residue retained (CTS) was conducted at Wuqiao experimental station of China Agricultural University since October 2008. The diurnal variation of photosynthetic characteristics of flag leaf, photosynthetic response curve, and crop yield under different tillage practices were evaluated during winter wheat filing stage in this study. The results showed thatthe net photosynthetic rate and stomatal conductance of flag leaf both diurnally varied with the bimodal curve, and the net photosynthetic rates were higher under treatments with residue retained than those under with residue removal. Diurnal variation of intercellular carbon dioxide concentration was observed with a "V-shaped wide mouth" bimodal curve under all treatments. Daily transpiration rate exhibited "double peak curve", except for the "single peak curve" under DTS, RTS and RT. The stimulated net photosynthetic rate was increased by 20.0%, 21.7%, 19.7%, 21.5%, 0.8%, 12.1% and 4.2% under NT, DT, RT, CT, CTS, RTS, and CTS, compared with DTS, respectively. Photosynthetic response curves were fitted better under treatments with residue retained than under treatments with residue removal. As for crop grain yields, the highest one was observed under DTS, following by RTS and CTS, and the lowest under CT. Crop grain yield was increased by 10.8%, 1.3%, 2.1%, 5.4%, 11.9%, 12.4%, and 12.6% under DTS, compared with NTS, RTS, CTS, NT, DT, RT, and CT, respectively. Thus, residue retaining under different tillage practices (e.g. NTS and DTS) could mitigate the mid-day depression of photosynthesis, maintain a high photosynthetic rate of winter wheat, and improve the dry matter accumulation and crop production.


Subject(s)
Photosynthesis , Triticum , Agriculture , China , Edible Grain , Soil
4.
Proteomics ; 16(14): 2005-18, 2016 07.
Article in English | MEDLINE | ID: mdl-27173832

ABSTRACT

The testicular seminiferous tubules contain Sertoli cells and different types of spermatogenic cells. They provide the microenvironment for spermatogenesis, but the precise molecular mechanism of spermatogenesis is still not well known. Here, we have employed tandem mass tag coupled to LC-MS/MS with the high-throughput quantitative proteomics technology to explore the protein expression from buffalo testicular seminiferous tubules at three different developmental stages (prepuberty, puberty, and postpuberty). The results show 304 differentially expressed proteins with a ≥2-fold change, and bioinformatics analysis indicates that 27 of these may be associated with spermatogenesis. Expression patterns of seven selected proteins were verified via Western blot and quantitative RT-PCR analysis, and further cellular localizations of these proteins by immunohistochemical or immunofluorescence analysis. Taken together, the results provide potential molecular markers of spermatogenesis and provide a rich resource for further studies on male reproduction regulation.


Subject(s)
Gene Expression Regulation, Developmental , Proteome/genetics , Seminiferous Tubules/metabolism , Sertoli Cells/metabolism , Spermatogenesis/genetics , A Kinase Anchor Proteins/genetics , A Kinase Anchor Proteins/metabolism , Animals , Buffaloes , Chromatography, Liquid , Gene Ontology , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Male , Molecular Sequence Annotation , Proteome/metabolism , Proteomics/methods , Seminiferous Tubules/cytology , Seminiferous Tubules/growth & development , Sertoli Cells/cytology , Sexual Maturation/genetics , Tandem Mass Spectrometry , rho GTP-Binding Proteins/genetics , rho GTP-Binding Proteins/metabolism
5.
Chem Commun (Camb) ; 48(5): 669-71, 2012 Jan 18.
Article in English | MEDLINE | ID: mdl-22113422

ABSTRACT

Two isostructural organic-inorganic hybrid solid materials based on cucurbituril derivatives and polyoxometalates, {[K(2)(H(2)O)(2)Na(2)(H(2)O)(2)Na(2)(H(2)O)(6)](P(2)W(18)O(62))(Me(10)Q(5))(2)}·~7H(2)O (1) and {[Rb(2)(H(2)O)(2)Na(2)(H(2)O)Na(2)(H(2)O)(4)](P(2)W(18)O(62))(Me(10)Q(5))(2)}·~8H(2)O (2), which exhibit reversible photochromic properties as well as excellent photocatalytic activities toward the degradation of methyl orange (MO) and rhodamine-B (RB) under visible light irradiation, are reported.

SELECTION OF CITATIONS
SEARCH DETAIL
...