Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 12: 710678, 2021.
Article in English | MEDLINE | ID: mdl-34603237

ABSTRACT

The apicomplexan Babesia microti is a main pathogenic parasite causing human babesiosis, which is one of the most widely distributed tick-borne diseases in humans. Pyruvate kinase (PYK) plays a central metabolic regulatory role in most living organisms and catalyzes the essentially irreversible step in glycolysis that converts phosphoenolpyruvate (PEP) to pyruvate. Hence, PYK is recognized as an attractive therapeutic target in cancer and human pathogens such as apicomplexans. In this study, we cloned, expressed, and purified B. microti PYK I (BmPYKI). Western blotting illustrated that anti-rBmPYKI antibody could specifically recognize the native BmPYKI protein in the lysate of B. microti with a 54-kDa band, which is consistent with the predicted size. In addition, the enzymatic activity of the purified recombinant PYKI (rPYKI) was tested under a range of pH values. The results showed that the maximum catalytic activity could be achieved at pH 7.0. The saturation curves for substrates demonstrated that the K m value for PEP was 0.655 ± 0.117 mM and that for ADP was 0.388 ± 0.087 mM. We further investigated the effect of 13 compounds on rBmPYKI. Kinetic analysis indicated that six inhibitors (tannic acid, shikonin, apigenin, PKM2 inhibitor, rosiglitazone, and pioglitazone) could significantly inhibit the catalytic activity of PYKI, among which tannic acid is the most efficient inhibitor with an IC50 value 0.49 µM. Besides, four inhibitors (tannic acid, apigenin, shikonin, and PKM2 inhibitor) could significantly decrease the growth of in vitro-cultured B. microti with IC50 values of 0.77, 2.10, 1.73, and 1.15 µM. Overall, the present study provides a theoretical basis for the design and development of new anti-Babesia drugs.

2.
Vet Parasitol ; 296: 109479, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34120031

ABSTRACT

Babesiosis caused by Babesia orientalis, an intraerythrocytic apicomplexan protozoan, is one of the most important diseases for water buffalo in central and southern China, leading to huge economic losses, and its main diagnostic method is microscopic examination. In this study, a recombinase polymerase amplification - lateral flow dipstick (RPA-LF) assay, targeting the mitochondrial COXI gene of B. orientalis, was developed to detect B. orientalis in water buffalo. The RPA-LF assay was carried out as an isothermal reaction at 37 °C within 15 min. The specificity assay showed no cross-reactivity with other protozoa, and the sensitivity assay revealed the minimum detection limit was 0.25 parasite/µL, which was 40-fold more sensitive than that of conventional PCR (0.25 versus10 parasites/µL blood). Moreover, the RPA-LF method was successfully applied to test clinical samples, with no significant difference being observed between RPA-LF and conventional PCR results. Compared with conventional PCR, the novel RPA-LF method had the advantages of simple operation, short time, high sensitivity, and high specificity for B. orientalis detection, indicating the potential use of RPA-LF for rapid field detection of B. orientalis.


Subject(s)
Babesia , Babesiosis , Buffaloes , Nucleic Acid Amplification Techniques , Parasitology , Animals , Babesia/genetics , Babesiosis/diagnosis , Buffaloes/parasitology , China , Nucleic Acid Amplification Techniques/standards , Nucleic Acid Amplification Techniques/veterinary , Parasitology/methods , Sensitivity and Specificity
3.
Front Immunol ; 12: 623492, 2021.
Article in English | MEDLINE | ID: mdl-34079537

ABSTRACT

Babesia orientalis, a major infectious agent of water buffalo hemolytic babesiosis, is transmitted by Rhipicephalus haemaphysaloides. However, no effective vaccine is available. Essential antigens that are involved in parasite invasion of host red blood cells (RBCs) are potential vaccine candidates. Therefore, the identification and the conduction of functional studies of essential antigens are highly desirable. Here, we evaluated the function of B. orientalis merozoite surface antigen 2c1 (BoMSA-2c1), which belongs to the variable merozoite surface antigen (VMSA) family in B. orientalis. We developed a polyclonal antiserum against the purified recombinant (r)BoMSA-2c1 protein. Immunofluorescence staining results showed that BoMSA-2c1 was expressed only on extracellular merozoites, whereas the antigen was undetectable in intracellular parasites. RBC binding assays suggested that BoMSA-2c1 specifically bound to buffalo erythrocytes. Cytoadherence assays using a eukaryotic expression system in vitro further verified the binding and inhibitory ability of BoMSA-2c1. We found that BoMSA-2c1 with a GPI domain was expressed on the surface of HEK293T cells that bound to water buffalo RBCs, and that the anti-rBoMSA2c1 antibody inhibited this binding. These results indicated that BoMSA-2c1 was involved in mediating initial binding to host erythrocytes of B. orientalis. Identification of the occurrence of binding early in the invasion process may facilitate understanding of the growth characteristics, and may help in formulating strategies for the prevention and control of this parasite.


Subject(s)
Antigens, Protozoan/metabolism , Antigens, Surface/metabolism , Babesia/metabolism , Babesiosis/parasitology , Cell Adhesion , Erythrocytes/parasitology , Merozoites/metabolism , Protozoan Proteins/metabolism , Animals , Antigens, Protozoan/genetics , Antigens, Surface/genetics , Babesia/genetics , Babesia/pathogenicity , Babesiosis/blood , Buffaloes , Erythrocytes/metabolism , HEK293 Cells , Humans , Merozoites/genetics , Merozoites/pathogenicity , Protozoan Proteins/genetics
4.
Parasitol Int ; 83: 102351, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33872796

ABSTRACT

Babesia microti is one of the most important pathogens causing humans and rodents babesiosis-an emerging tick-borne disease that occurs worldwide. At present, the gold standard for the detection of Babesia is the microscopic examination of blood smears, but this diagnostic test has several limitations. The recombinase polymerase amplification with lateral flow (LF-RPA) assay targeting the mitochondrial cytochrome oxidase subunit I (cox I) gene of B. microti was developed in this study. The LF-RPA can be performed within 10-30 min, at a wide range of temperatures between 25 and 45 °C, which is much faster and easier to perform than conventional PCR. The results showed that the LF-RAP can detect 0.25 parasites/µl blood, which is 40 times more sensitive than the conventional PCR based on the V4 variable region of 18S rRNA. Specificity assay showed no cross-reactions with DNAs of related apicomplexan parasites and their host. The applicability of the LF-RPA method was further evaluated using two clinical human samples and six experimental mice samples, with seven samples were positively detected, while only three of them were defined as positive by conventional PCR. These results present the developed LF-RPA as a new simple, specific, sensitive, rapid and convenient method for diagnosing infection with B. microti. This novel assay was the potential to be used in field applications and large-scale sample screening.


Subject(s)
Babesia microti/isolation & purification , Babesiosis/diagnosis , Nucleic Acid Amplification Techniques/methods , Animals , Babesia microti/enzymology , Babesiosis/parasitology , DNA, Protozoan/analysis , Mice , Mice, Inbred BALB C , Parasitemia/parasitology , Protozoan Proteins/analysis , Recombinases/analysis
5.
Parasitol Res ; 119(11): 3639-3648, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32930858

ABSTRACT

Due to its wide presence in apicomplexan parasites as well as high polymorphism and antigenic diversity, the variable merozoite surface antigen (VMSA) family in Babesia sp. has attracted increasing attention of researchers. Here, all the reported VMSA genes of Babesia spp. were obtained from GenBank, and multiple alignments were performed by using conserved regions to blast the Babesia orientalis genome database (unpublished data). Five MSA genes (named MSA-2a1, MSA-2a2, MSA-2c1, MSA-1, and MSA-2c2, respectively) were identified, sequenced, and cloned from B. orientalis, which were shown to encode proteins with open reading frames ranging in size from 266 (MSA-2c1) to 317 (MSA-1) amino acids. All the five proteins contain an MSA-2c superfamily conserved domain, with an identical signal peptide and glycosyl phosphatidyl inositol (GPI)-anchor for each of them. The five proteins were also predicted to contain B cell epitopes, with only three for BoMSA-2c1, the smallest protein in the BoVMSA family, while at least six for each of the others. Notably, BoMSA-2a1 has 2 identical copies, a specific phenomenon only present in B. orientalis. This research has determined the MSA genes of B. orientalis and provides a genetic basis for further research of functional genes in B. orientalis.


Subject(s)
Antigens, Protozoan/genetics , Babesia/genetics , Protozoan Proteins/genetics , Animals , Antigens, Protozoan/immunology , Antigens, Surface/genetics , Babesia/immunology , Epitopes, B-Lymphocyte , Glycosylphosphatidylinositols/analysis , Merozoite Surface Protein 1/genetics , Merozoites/chemistry , Merozoites/immunology , Open Reading Frames , Polymorphism, Genetic , Protozoan Proteins/immunology
6.
Front Vet Sci ; 6: 333, 2019.
Article in English | MEDLINE | ID: mdl-31681802

ABSTRACT

Babesia gibsoni is one of the important pathogens causing severe incurable canine babesiosis, suggesting the necessity to develop a sensitive, specific, and highly automated diagnostic method for clinical application. Surface proteins are ideal candidates for diagnostic targets because they are the primary targets for host immune responses during host-parasite interactions. Glycosylphosphatidylinositol (GPI)-anchored proteins are abundant on the surface of parasites and play an important role in parasite diagnosis. In this study, a GPI-anchored protein named BgGPI47-WH was obtained and mouse anti-rBgGPI47-WH polyclonal antibody was produced by immunizing mice with the purified protein and Freund's adjuvant. Western blot was used to identify the native form and immunogenicity of BgGPI47-WH. An ELISA method was established by using recombinant BgGPI47-WH protein to evaluate its potential as a diagnostic antigen and the established method exhibited high specificity. The antibody response was evaluated by using the B. gibsoni-infected sera collected from different experimental dogs and the established ELISA could recognize antibodies at day 6 until day 101 post infection, indicating the potential use of BgGPI47-WH for early stage diagnosis. The specificity of the established ELISA was further evaluated by using 147 clinical samples collected from animal hospitals and 17.0% (25/147) of the samples were tested positive, with an overall proportion agreement of 86.39% between the results from BgGPI47-WH and BgSA1. Our results indicated that BgGPI47-WH could be used as a reliable diagnostic antigen and this study has proposed a practical method for early diagnosis of B. gibsoni.

7.
FASEB J ; 33(12): 13669-13682, 2019 12.
Article in English | MEDLINE | ID: mdl-31585506

ABSTRACT

The tick- and transfusion-transmitted human pathogen Babesia microti infects host erythrocytes to cause the pathologic symptoms associated with human babesiosis, an emerging disease with worldwide distribution and potentially fatal clinical outcome. Drugs currently recommended for the treatment of babesiosis are associated with a high failure rate and significant adverse events, highlighting the urgent need for more-effective and safer babesiosis therapies. Unlike other apicomplexan parasites, B. microti lacks a canonical lactate dehydrogenase (LDH) but instead expresses a unique enzyme, B. microti LDH (BmLDH), acquired through evolution by horizontal transfer from a mammalian host. Here, we report the crystal structures of BmLDH in apo state and ternary complex (enzyme-NADH-oxamate) solved at 2.79 and 1.89 Å. Analysis of these structures reveals that upon binding to the coenzyme and substrate, the active pocket of BmLDH undergoes a major conformational change from an opened and disordered to a closed and stabilized state. Biochemical assays using wild-type and mutant B. microti and human LDHs identified Arg99 as a critical residue for the catalytic activity of BmLDH but not its human counterpart. Interestingly, mutation of Arg99 to Ala had no impact on the overall structure and affinity of BmLDH to NADH but dramatically altered the closure of the enzyme's active pocket. Together, these structural and biochemical data highlight significant differences between B. microti and human LDH enzymes and suggest that BmLDH could be a suitable target for the development of selective antibabesial inhibitors.-Yu, L., Shen, Z., Liu, Q., Zhan, X., Luo, X., An, X., Sun, Y., Li, M., Wang, S., Nie, Z., Ao, Y., Zhao, Y., Peng, G., Ben Mamoun, C., He, L., Zhao, J. Crystal structures of Babesia microti lactate dehydrogenase BmLDH reveal a critical role for Arg99 in catalysis.


Subject(s)
Arginine/metabolism , Babesia microti/enzymology , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , L-Lactate Dehydrogenase/chemistry , L-Lactate Dehydrogenase/metabolism , Arginine/chemistry , Babesia microti/drug effects , Babesia microti/growth & development , Bacterial Proteins/genetics , Catalysis , Contraceptive Agents, Male/pharmacology , Crystallography, X-Ray , Gossypol/pharmacology , L-Lactate Dehydrogenase/genetics , Models, Molecular , Organic Chemicals/pharmacology , Protein Conformation , Substrate Specificity
8.
Parasit Vectors ; 12(1): 200, 2019 May 03.
Article in English | MEDLINE | ID: mdl-31053087

ABSTRACT

BACKGROUND: The thrombospondin-related anonymous protein (TRAP) was first discovered in the sporozoite of Plasmodium falciparum and TRAP family proteins are secreted by micronemes and transported to the parasite surface to participate in the invasion process. Various TRAP proteins have been identified in apicomplexan protozoans, but there have been few reports about TRAP proteins in Babesia orientalis. METHODS: The functional domain of TRAP2 in B. orientalis was cloned, sequenced, characterized and compared to the TRAP sequences of related apicomplexan parasites. The functional domain of BoTRAP2 was truncated, named BoTRAP2-1, and then cloned into the pET-28a expression vector. Rabbit anti-rBoTRAP2-1 polyclonal antibody was produced by immunizing three rabbits. Western blot analysis was used to identify the native form and immunogenicity of BoTRAP2. The localization of BoTRAP2 was identified by indirect fluorescence assay (IFA). RESULTS: The amplified genes of BoTRAP2 are 2817 bp in length, encoding a functional domain of about 938 aa with two vWFA domains, one TSP domain and one transmembrane domain. The amino acid sequence of BoTRAP2 has a high similarity with that of B. bovis and B. gibsoni. The predicted tertiary structure of truncated BoTRAP2-1 confirmed that BoTRAP2 contains two vWFA domains and a TSP domain, the main functional areas of the protein. The native BoTRAP2 was identified from B. orientalis lysate by using rabbit polyclonal anti-rBoTRAP2-1. A band corresponding to rBoTRAP2-1 was detected by reaction with serum from a B. orientalis-infected water buffalo, indicating that the protein has a high immunogenicity. IFA showed that BoTRAP2 is mainly localized on the apical end of parasites by rabbit anti-rBoTRAP2-1 polyclonal serum. CONCLUSIONS: The rBoTRAP2 could differentiate serum from B. orientalis-infected water buffalo and normal water buffalo, implicating that BoTRAP2 has high immunogenicity and could serve as a candidate antigen for diagnosis of B. orientalis infection in buffalo.


Subject(s)
Babesia/genetics , Babesiosis/parasitology , Protozoan Proteins/genetics , Animals , Antibodies, Protozoan/immunology , Babesia/chemistry , Babesia/classification , Babesia/immunology , Babesiosis/immunology , Buffaloes/parasitology , Cattle , Cattle Diseases/immunology , Cattle Diseases/parasitology , Cloning, Molecular , Phylogeny , Protein Domains , Protozoan Proteins/chemistry , Protozoan Proteins/immunology , Rabbits
9.
Front Microbiol ; 10: 3046, 2019.
Article in English | MEDLINE | ID: mdl-32010102

ABSTRACT

Babesia microti, a tick-borne intraerythrocytic zoonotic protozoan, causes most of human babesiosis in the world, and patients usually experience intermittent fever, fatigue, and chills, followed by a combination of additional symptoms and even death in severe cases. Unfortunately, there is no curable drug or effective vaccine available, and the mechanism of related virulence factors in invasion to host cells during the merozoite stage is unclear. Here, we evaluated a secreted protein annotated as B. microti surface antigen 1 (BmSA1) and identified from in vitro culture supernatant by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). BmSA1 fragment was expressed in Escherichia coli to prepare polyclonal antiserum. Western blot analysis revealed the existence of BmSA1 in the lysate of the parasites and the hemolysate of infected red blood cells (iRBCs). Laser confocal microscopy confirmed BmSA1 as a secreted protein with diffuse distribution around the parasites in red blood cells (RBCs). The adhesion capacity of BmSA1 against the host RBCs was tested by RBC binding assays using the recombinant BmSA1 protein (rBmSA1), which was shown to specifically bind to host RBCs. Further in vitro antiserum-neutralization test demonstrated that the growth of parasites could be significantly inhibited by the anti-BmSA1 antiserum. These results indicate that BmSA1 is a crucial factor for B. microti invasion into host RBCs with an important role in host-parasite interactions during the merozoite stage and has the potential use as a vaccine candidate due to its high secretion amount.

10.
Front Pharmacol ; 10: 1663, 2019.
Article in English | MEDLINE | ID: mdl-32116673

ABSTRACT

Human babesiosis is caused by apicomplexan Babesia parasites, including Babesia microti, Babesia crassa, Babesia sp. MOI, Babesia divergens, Babesia duncani, and Babesia venatorum. Among them, B. microti is the most common cause of human and rodent babesiosis. Currently, no vaccine is available, and drugs for the treatment have high failure rates and side effects. Due to lack of a traditional tricarboxylic acid cycle (TCA cycle) and its dominant dependence on anaerobic metabolism to produce ATP, B. microti lactate dehydrogenase (BmLDH) was assumed to play a critical role in B. microti ATP supply. Our previous study demonstrated that BmLDH is a potential drug target and Arg99 is a crucial site. Herein, a molecular docking was performed based on the crystal structure of BmLDH from a series of gossypol derivatives or structural analogs to find the potent inhibitors interacting with the residue Arg99, and three naphthalene-based compounds 2,6-naphthalenedicarboxylic acid (NDCA), 1,6-dibromo-2-hydroxynapthalene 3-carboxylic acid (DBHCA), and 3,5-dihydroxy 2-napthoic acid (DHNA) were selected for further tests. Enzyme activity inhibitory experiments show that DBHCA and DHNA inhibit recombinant BmLDH (rBmLDH) catalysis with ~109-fold and ~5,000-fold selectivity over human LDH, respectively. Surface plasmon resonance (SPR) assays demonstrate that DHNA has a lower K D value to BmLDH (3.766 x 10-5 M), in contrast to a higher value for DBHCA (3.988 x 10-8 M). A comparison of the kinetic parameters [association constant (k a) and dissociation constant (k d) values] reveals that DBHCA can bind the target faster than DHNA, while the complex of DHNA with the target dissociates slower than that of DBHCA. Both DBHCA and DHNA can inhibit the growth of B. microti in vitro with half-maximal inhibitory concentration (IC50) values of 84.83 and 85.65 µM, respectively. Cytotoxicity tests in vitro further indicate that DBHCA and DHNA have selectivity indexes (SI) of 2.6 and 22.1 between B. microti and Vero cells, respectively. Although the two naphthalene-based compounds only display modest inhibitory activity against both rBmLDH and the growth of B. microti, the compound DHNA features high selectivity and could serve as a novel lead compound for designing LDH-specific antibabesial drug.

11.
Parasit Vectors ; 11(1): 667, 2018 Dec 27.
Article in English | MEDLINE | ID: mdl-30587207

ABSTRACT

BACKGROUND: The thrombospondin-related anonymous protein (TRAP) family, a kind of transmembrane protein, is widely distributed with a conserved feature of structure in all apicomplexan parasites and plays a crucial role in the gliding motility and survival of parasites. METHODS: The Babesia orientalis TRAP1 gene (BoTRAP1) was truncated and cloned into a pET-42b expression vector and expressed as a GST-tag fusion protein with a TEV protease site. Rabbit anti-rBoTRAP1 antibody was produced and purified using a protein A chromatography column. Western blot analysis was performed to identify the native protein of BoTRAP1 and differentiate B. orientalis-infected positive from negative serum samples. The localization of BoTRAP1 on merozoites was identified by the indirect florescent antibody test (IFAT). RESULTS: The partial sequence of the TRAP1 gene was cloned from B. orientalis cDNA and identified to contain a von Willebrand factor A (vWFA) region and a thrombospondin type-1 (TSP-1) domain; it had a length of 762 bp, encoding a polypeptide of 254 amino acid residues with a predicted size of 28.2 kDa. The partial sequence was cloned into a pET-42b expression vector and expressed in E. coli as a GST fusion protein. Western blot indicated that rBoTRAP1 has a high immunogenicity and can differentiate B. orientalis-infected positive and negative serum samples collected from water buffaloes. IFAT showed that BoTRAP1 is mainly localized on the apical end of intracellular parasites by using polyclonal antibodies (PcAb) against rBoTRAP1. Meanwhile, the PcAb test also identified the native BoTRAP1 as a ~65 kDa band from B. orientalis lysates. The predicted 3D structure of BoTRAP1 contains a metalion-dependent adhesion site (MIDAS), which could be important for interaction with ligand on the surface of the host cells. CONCLUSIONS: Like all known protozoa, B. orientalis has a TRAP family, comprising TRAP1, TRAP2, TRAP3 and TRAP4. The newly identified and characterized BoTRAP1 may play a key role in the invasion of B. orientalis into water buffalo erythrocytes.


Subject(s)
Babesia/genetics , Babesiosis/parasitology , Protozoan Proteins/genetics , Amino Acid Sequence , Babesia/chemistry , Babesia/classification , Babesia/metabolism , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Molecular Sequence Data , Molecular Weight , Phylogeny , Protein Domains , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Sequence Alignment
12.
Parasitol Res ; 117(12): 3945-3951, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30293152

ABSTRACT

Babesia gibsoni is a protozoan parasite responsible for the majority of reported cases of canine babesiosis in China. Currently, microscopic examination of the Giemsa-stained thin blood smears is the main diagnosis method in clinic. Here, we report the recombinase polymerase amplification-lateral flow (LF-RPA) dipstick detection method for targeting B. gibsoni cytochrome c oxidase subunit I (cox I) gene. The reaction takes only 20-30 min under isothermal temperatures between 30 and 45 °C. Specificity was evaluated using DNA from related apicomplexan parasites and their host, while the sensitivity was calculated based on the DNA from the experimental B. gibsoni-infected dogs. Results indicated that the LF-RPA method is 20 times more sensitive than the conventional PCR based on 18S rRNA and has no cross reaction with any other test DNAs. The applicability of the LF-RPA method was further evaluated using 15 samples collected from clinic. Thirteen of the 15 samples (86.67%) were detected as positive by LF-RPA, while 10 of them (66.67%) were found positive by conventional PCR. Overall, the novel LF-RPA assay is effective for the detection of B. gobsini and has considerable advantages over the conventional PCR in sensitivity, specificity, simplicity in operation, less time consumption, and visual detection. The LF-RPA method may facilitate the surveillance and early detection of B. gibsoni infection in dogs.


Subject(s)
Babesia/genetics , Babesia/isolation & purification , Babesiosis/diagnosis , Dog Diseases/diagnosis , Nucleic Acid Amplification Techniques/methods , Animals , Babesiosis/parasitology , China , Dog Diseases/parasitology , Dogs , Polymerase Chain Reaction/methods , RNA, Ribosomal, 18S/genetics , Recombinases/genetics , Sensitivity and Specificity
13.
Parasit Vectors ; 11(1): 433, 2018 Jul 25.
Article in English | MEDLINE | ID: mdl-30045776

ABSTRACT

BACKGROUND: The spherical body, a membrane bound organelle localized in the apical organelle complex, is unique to Babesia and Theileria spp. The spherical body proteins (SBPs) secreted by spherical bodies include SBP1, SBP2, SBP3 and SBP4. Up to now, only SBP3 has been characterized in Babesia orientalis. METHODS: The BoSBP4 gene was amplified from cDNA and gDNA and cloned into the pGEX-6P-1 vector by homologous recombination, sequenced and analyzed by bioinformatics tools. The amino acid (aa) sequence of BoSBP4 was compared with that of Babesia bovis and Babesia bigemina as well as SBP3 of B. orientalis. The immunoreactivity was evaluated by incubating recombinant BoSBP4 (rBoSBP4) with the serum of B. orientalis-infected water buffalo. The native form of BoSBP4 was identified by incubating lysate of B. orientalis-infected water buffalo erythrocytes with the anti-rBoSBP4 mouse serum. The cellular localization of BoSBP4 was determined by indirect immunofluorescence assay. RESULTS: The full length of the BoSBP4 gene was estimated to be 945 bp without introns, encoding a 314 aa polypeptide with a predicted molecular weight of 37 kDa. The truncated recombinant protein was expressed from 70 to 945 bp as a GST fusion protein with a practical molecular weight of 70 kDa. BoSBP4 shared a 40% and 30% identity with B. bovis and B. bigemina, respectively. Furthermore, it was 31% identical to SBP3 of B. orientalis. BoSBP4 was identified in the lysate of B. orientalis-infected water buffalo erythrocytes with a molecular weight of 37 kDa, corresponding to the expected molecular mass of BoSBP4. The result of rBoSBP4 with positive serum revealed that BoSBP4 can elicit an immune response to B. orientalis-infected water buffalo. The cellular localization of BoSBP4 was detected to be adjacent to the merozoite nucleus in the intracellular phase, followed by the diffusion of the fluorescence of BoSBP4 into the cytoplasm of B. orientalis-infected erythrocytes as puncta-like specks and a gradual increase of the fluorescence. CONCLUSIONS: In this study, SBP4 in B. orientalis was characterized for the first time. It may play a key role in interaction with the host cell by being secreted into the cytoplasm of the B. orientalis-infected erythrocytes to facilitate parasite growth and reproduction.


Subject(s)
Babesia/metabolism , Erythrocytes/parasitology , Genome, Protozoan , Protozoan Proteins/metabolism , Animals , Babesiosis/blood , Babesiosis/parasitology , Buffaloes/blood , Cloning, Molecular , Computational Biology , Models, Molecular , Phylogeny , Protein Conformation , Protein Transport , Protozoan Proteins/chemistry
14.
Parasit Vectors ; 11(1): 205, 2018 03 27.
Article in English | MEDLINE | ID: mdl-29580261

ABSTRACT

BACKGROUND: The spherical body is a distinct organelle only existing in Babesia and Theileria. Spherical body proteins (SBPs) are secreted from spherical bodies and incorporated into the cytoplasm of infected erythrocytes during invasion and post-invasion stages. Four different SBP homologues (SBP1, SBP2, SBP3 and SBP4) have been identified in Babesia bovis and Babesia bigemina. So far, there has been no report available about the identification of SBPs in Babesia orientalis. METHODS: The SBP3-like in B. orientalis (BoSBP3-like) was cloned, sequenced, characterized and compared to the SBP3 sequences of B. bovis and B. bigemina by bioinformatics analyses. The BoSBP3-like gene was truncated into three fragments: BoSBP3-like-1 (915 bp), BoSBP3-like-2 (1311 bp) and BoSBP3-like-3 (1011 bp), which were amplified and cloned into the expression vector pET-28a and expressed as three truncated recombinant (His-fusion) proteins. The immunogenicity, native forms and localization of BoSBP3-like were identified by western blot and indirect immunofluorescence assay (IFA). RESULTS: The BoSBP3-like gene was intronless with an open reading frame (ORF) of 3237 bp, encoded a 1079 amino acid polypeptide with a predicted size of 135 kDa, and contained a cysteine-rich region, three dispersing FAINT domains and a signal peptide (1-16 aa) at the N-terminus. The amino acid sequence of BoSBP3-like was 61.6 and 35.0% identical to that of B. bovis and B. bigemina, respectively. BoSBP3-like was identified as 135 kDa in the parasite lysate by rabbit antiserum against the truncated recombinant BoSBP3-like-1 (rBoSBP3-like-1). Three specific bands corresponding to rBoSBP3-like-1 (1-305 aa, 43 kDa), rBoSBP3-like-2 (306-742 aa, 58 kDa) and rBoSBP3-like-3 (743-1079 aa, 52 kDa) were detected by reaction with serum from B. orientalis-infected buffalo. The BoSBP3-like was not only localized in the spherical body of B. orientalis but also in the cytoplasm of infected erythrocytes of buffalo as puncta-like protein specks at both single and paired parasite development stages. CONCLUSIONS: Through secretion into the cytoplasm of infected erythrocytes, BoSBP3-like may play a significant role in adaptation, interaction, and modification related to the host environment to benefit the growth and survival of Babesia. BoSBP3-like could react with the serum from B. orientalis-infected buffalo, but not healthy buffalo, implicating that BoSBP3-like is highly antigenic and may serve as a candidate diagnostic antigen for the detection of B. orientalis.


Subject(s)
Babesia/metabolism , Cytoplasm/chemistry , Cytoplasm/parasitology , Erythrocytes/chemistry , Erythrocytes/parasitology , Protozoan Proteins/metabolism , Animals , Babesia/growth & development , Blotting, Western , Buffaloes , Cloning, Molecular , Computational Biology , Fluorescent Antibody Technique, Indirect , Gene Expression , Protozoan Proteins/analysis , Protozoan Proteins/genetics , Rabbits , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...