Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 765
Filter
1.
Article in English | MEDLINE | ID: mdl-38826139

ABSTRACT

In ovarian cancer (OC), identifying key molecular players in disease escalation and chemoresistance remains critical. Our investigation elucidates the role of the DNA Polymerase Mu (POLM) , especially G312R mutation, in propelling oncogenesis through dual pathways. POLMG312R markedly augments the ribonucleotide insertion capability of POLM, precipitating genomic instability. Additionally, our research reveals that POLMG312R perturbs Collagen alpha-1 (XI) chain (COL11A1) expression-a gene plays a key role in oncogenesis-and modulates the NF-κB signaling pathway, alters the secretion of downstream inflammatory cytokines, and promotes tumor-macrophage interactions. We illustrate a bidirectional regulatory interaction between POLM, particularly its G312R variant, and COL11A1. This interaction regulates NF-κB signaling, culminating in heightened malignancy and resistance to chemotherapy in OC cells. These insights position the POLM as a potential molecular target for OC therapy, shedding light on the intricate pathways underpinning POLM variant disease progression.

2.
Adv Clin Exp Med ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38739103

ABSTRACT

BACKGROUND: Lumbar disc herniation (LDH) is one of the most common diseases and is a global medical and socioeconomic problem characterized by leg or back pain, weakness in the lower extremities and paresthesia. OBJECTIVES: A multicenter, randomized, double-blinded, parallel, positive-controlled clinical trial was conducted to evaluate the efficacy and safety of Yaobitong capsules (YBT) for LDH. MATERIAL AND METHODS: Patients (n = 479) were recruited and randomized into YBT and Jingyaokang capsule (JYK) groups (the positive control), and received YBT or JYK at a dose of 3 capsules 3 times per day after a meal for 30 days. The primary efficacy outcome was the Oswestry Disability Index (ODI), with the visual analogue scale (VAS) used as the secondary efficacy outcome. The adverse events and adverse reactions were also evaluated. RESULTS: There was no significant difference in baseline characteristics between YBT (n = 358) and JYK groups (n = 120), and no difference was observed between groups for mean ODI score at day 0 (p = 0.064) or day 7 (p = 0.196), but there were differences at days 14, 21 and 30 (p < 0.001). The YBT showed more decline from baseline, and the decreased ODI score was substantially different from JYK (p < 0.001). The differences in decreased VAS scores between YBT and JYK were also significant at each time point (days 7, 14, 21, and 30), with better scores in the YBT group than in the JYK group (p < 0.001). In terms of safety, there was no obvious disparity in adverse events or adverse reactions between the 2 groups (p > 0.05). CONCLUSIONS: Yaobitong was better than JYK for LDH treatment, with no significant difference in safety. The study suggests that YBT is a promising and effective treatment for LDH.

3.
PLoS Pathog ; 20(5): e1012232, 2024 May.
Article in English | MEDLINE | ID: mdl-38743760

ABSTRACT

Infectious bronchitis virus (IBV) is a coronavirus that infects chickens, which exhibits a broad tropism for epithelial cells, infecting the tracheal mucosal epithelium, intestinal mucosal epithelium, and renal tubular epithelial cells. Utilizing single-cell RNA sequencing (scRNA-seq), we systematically examined cells in renal, bursal, and tracheal tissues following IBV infection and identified tissue-specific molecular markers expressed in distinct cell types. We evaluated the expression of viral RNA in diverse cellular populations and subsequently ascertained that distal tubules and collecting ducts within the kidney, bursal mucosal epithelial cells, and follicle-associated epithelial cells exhibit susceptibility to IBV infection through immunofluorescence. Furthermore, our findings revealed an upregulation in the transcription of proinflammatory cytokines IL18 and IL1B in renal macrophages as well as increased expression of apoptosis-related gene STAT in distal tubules and collecting duct cells upon IBV infection leading to renal damage. Cell-to-cell communication unveiled potential interactions between diverse cell types, as well as upregulated signaling pathways and key sender-receiver cell populations after IBV infection. Integrating single-cell data from all tissues, we applied weighted gene co-expression network analysis (WGCNA) to identify gene modules that are specifically expressed in different cell populations. Based on the WGCNA results, we identified seven immune-related gene modules and determined the differential expression pattern of module genes, as well as the hub genes within these modules. Our comprehensive data provides valuable insights into the pathogenesis of IBV as well as avian antiviral immunology.


Subject(s)
Cell Communication , Chickens , Coronavirus Infections , Gene Regulatory Networks , Infectious bronchitis virus , Single-Cell Analysis , Animals , Infectious bronchitis virus/genetics , Infectious bronchitis virus/physiology , Coronavirus Infections/virology , Coronavirus Infections/genetics , Poultry Diseases/virology , Poultry Diseases/genetics , Poultry Diseases/immunology , Sequence Analysis, RNA , Epithelial Cells/virology , Epithelial Cells/metabolism
4.
Jpn J Clin Oncol ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807545

ABSTRACT

BACKGROUND: The purpose of this study is to evaluate the effects of neoadjuvant therapy on glucose and lipid metabolism, bone mineral density (BMD) and muscle, and to explore the relationship between metabolic disorders and changes in body composition, so as to provide better health management strategies for breast cancer survivors. METHODS: The clinical data of 43 patients with breast cancer who received neoadjuvant therapy in Xuanwu Hospital from January 2020 to June 2021 were analyzed retrospectively. The biochemical results, including albumin, blood glucose, triglyceride and cholesterol, were collected before neoadjuvant therapy and before surgery. The pectoral muscle area, pectoral muscle density and cancellous bone mineral density of the 12th thoracic vertebra were also measured by chest CT. RESULTS: After neoadjuvant therapy, fasting blood glucose, triglyceride and cholesterol were significantly increased, albumin was decreased. At the same time, pectoral muscle area, pectoral muscle density and T12 BMD were decreased. After treatment, BMD was positively correlated with pectoral muscle area, R2 = 0.319, P = 0.037, and BMD was also positively correlated with pectoral muscle density, R2 = 0.329, P = 0.031. Multivariate analysis showed that BMD and pectoral muscle density were correlated with menstrual status, and pectoral muscle area was correlated with body mass index before treatment, none of which was related to glucose and lipid metabolism. CONCLUSION: Neoadjuvant therapy can cause glucose and lipid metabolism disorder, BMD decrease and muscle reduction. BMD was positively correlated with muscle area and density after treatment, suggesting that patients had an increased chance of developing osteosarcopenia.

5.
Int J Biol Macromol ; 270(Pt 1): 132057, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38710243

ABSTRACT

Adipose tissue plays a crucial role in maintaining energy balance, regulating hormones, and promoting metabolic health. To address disorders related to obesity and develop effective therapies, it is essential to have a deep understanding of adipose tissue biology. In recent years, RNA methylation has emerged as a significant epigenetic modification involved in various cellular functions and metabolic pathways. Particularly in the realm of adipogenesis and lipid metabolism, extensive research is ongoing to uncover the mechanisms and functional importance of RNA methylation. Increasing evidence suggests that RNA methylation plays a regulatory role in adipocyte development, metabolism, and lipid utilization across different organs. This comprehensive review aims to provide an overview of common RNA methylation modifications, their occurrences, and regulatory mechanisms, focusing specifically on their intricate connections to fat metabolism. Additionally, we discuss the research methodologies used in studying RNA methylation and highlight relevant databases that can aid researchers in this rapidly advancing field.


Subject(s)
Epigenesis, Genetic , Lipid Metabolism , RNA , Lipid Metabolism/genetics , Humans , Methylation , Animals , RNA/metabolism , RNA/genetics , Adipogenesis/genetics , Adipose Tissue/metabolism , RNA Methylation
6.
Front Bioeng Biotechnol ; 12: 1373419, 2024.
Article in English | MEDLINE | ID: mdl-38737538

ABSTRACT

Atopic dermatitis (AD) is a common inflammatory skin disease that significantly affects patients' quality of life. This study aimed to evaluate the therapeutic potential of cell-free fat extract (FE) in AD. In this study, the therapeutic effect of DNCB-induced AD mouse models was investigated. Dermatitis scores and transepidermal water loss (TEWL) were recorded to evaluate the severity of dermatitis. Histological analysis and cytokines measurement were conducted to assess the therapeutic effect. Additionally, the ability of FE to protect cells from ROS-induced damage and its ROS scavenging capacity both in vitro and in vivo were investigated. Furthermore, we performed Th1/2 cell differentiation with and without FE to elucidate the underlying therapeutic mechanism. FE reduced apoptosis and cell death of HaCat cells exposed to oxidative stress. Moreover, FE exhibited concentration-dependent antioxidant activity and scavenged ROS both in vitro and vivo. Treatment with FE alleviated AD symptoms in mice, as evidenced by improved TEWL, restored epidermis thickness, reduced mast cell infiltration, decreased DNA oxidative damage and lower inflammatory cytokines like IFN-γ, IL-4, and IL-13. FE also inhibited the differentiation of Th2 cells in vitro. Our findings indicate that FE regulates oxidative stress and mitigates Th2-mediated inflammation in atopic dermatitis by inhibiting Th2 cell differentiation, suggesting that FE has the potential as a future treatment option for AD.

7.
Complement Ther Med ; 82: 103052, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38763206

ABSTRACT

OBJECTIVE: The purpose of this systematic review was to examine the association between folic acid supplementation during pregnancy and the risk of preeclampsia. METHODS: Relevant studies were included by searching Embase, PubMed, Scope, Web of science, Cochrane Library databases. Studies were reviewed according to prespecified inclusion and exclusion criteria. Study characteristics were summarized, and study quality was assessed. Risk ratios (RR) and 95% confidence intervals (CI) were used as indicators of effect to assess the relationship between folic acid supplementation and risk of preeclampsia. RESULTS: The protocol of this study was prospectively registered with the PROSPERO (registration No. CRD42022380636). A total of nine studies were included, divided into three groups according to the type of study, containing a total of 107 051 and 105 222 women who were supplemented and not supplemented with folic acid during pregnancy. The results showed that folic acid supplementation during pregnancy could not be proven to reduce the risk of preeclampsia. CONCLUSION: The results of the study suggest that folic acid supplementation alone is not associated with a decreased risk of pre-eclampsia,but the inferences are somewhat limited by the low methodological quality of the included literature, and therefore higher quality studies are needed to prove this point.


Subject(s)
Dietary Supplements , Folic Acid , Pre-Eclampsia , Pre-Eclampsia/prevention & control , Humans , Pregnancy , Folic Acid/therapeutic use , Folic Acid/administration & dosage , Female
8.
PLoS One ; 19(4): e0297677, 2024.
Article in English | MEDLINE | ID: mdl-38635561

ABSTRACT

A nitrogen-phosphorus dual-doped porous spore carbon (NP-PSC) positive electrode matrix was prepared using native auricularia auricula as solid medium based on the principle of biomass rot. Yeast was introduce and cultured by the auricularia auricula solid medium. The freeze-drying and carbonization activation processes made the materials present a three-dimensional porous spore carbon aerogel properties. Yeast fermentation transformed auricularia auricula from blocky structure to porous structure and introduced nitrogen-phosphorus dual-doping. The physical and chemical properties of the prepared materials were characterized in detail. Electrochemical performance of NP-PSC in Li-S batteries was systematically investigated. Porous structure and heteroatom-doping improved the electrochemical performance, which is much superior to conventional activated carbon materials.


Subject(s)
Auricularia , Lithium , Saccharomyces cerevisiae , Porosity , Ions , Nitrogen , Phosphorus
9.
Foods ; 13(7)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38611413

ABSTRACT

Finding stable and bioavailable calcium supplements is crucial for addressing calcium deficiency. In this study, glycated peptide-calcium chelates (WMPHs-COS-Ca) were prepared from walnut meal protein hydrolysates (WMPHs) and chitosan oligosaccharides (COSs) through the Maillard reaction, and the structural properties and stability of the WMPHs-COS-Ca were characterized. The results showed that WMPHs and COSs exhibited high binding affinities, with a glycation degree of 64.82%. After glycation, Asp, Lys, and Arg decreased by 2.07%, 0.46%, and 1.06%, respectively, which indicated that these three amino acids are involved in the Maillard reaction. In addition, compared with the WMPHs, the emulsifying ability and emulsion stability of the WMPHs-COS increased by 10.16 mg2/g and 52.73 min, respectively, suggesting that WMPHs-COS have better processing characteristics. After chelation with calcium ions, the calcium chelation rate of peptides with molecular weights less than 1 kDa was the highest (64.88%), and the optimized preparation conditions were 5:1 w/w for WMPH-COS/CaCl2s, with a temperature of 50 °C, a chelation time of 50 min, and a pH of 7.0. Scanning electron microscopy showed that the "bridging role" of WMPHs-COS changed to a loose structure. UV-vis spectroscopy and Fourier transform infrared spectrometry results indicated that the amino nitrogen atoms, carboxyl oxygen atoms, and carbon oxygen atoms in WMPHs-COS chelated with calcium ions, forming WMPHs-COS-Ca. Moreover, WMPHs-COS-Ca was relatively stable at high temperatures and under acidic and alkaline environmental and digestion conditions in the gastrointestinal tract, indicating that WMPHs-COS-Ca have a greater degree of bioavailability.

10.
PLoS One ; 19(4): e0301660, 2024.
Article in English | MEDLINE | ID: mdl-38626146

ABSTRACT

BACKGROUND: Ulcerative colitis (UC) is an inflammatory disease of the digestive tract. Rauwolfia polysaccharide (Rau) has therapeutic effects on colitis in mice, but its mechanism of action needs to be further clarified. In the study, we explored the effect of Rau on the UC cell model induced by Lipopolysaccharide (LPS). METHODS: We constructed a UC cell model by stimulating HT-29 cells with LPS. Dextran sodium sulfate (DSS) was used to induce mice to construct an animal model of UC. Subsequently, we performed Rau administration on the UC cell model. Then, the therapeutic effect of Rau on UC cell model and was validated through methods such as Cell Counting Kit-8 (CCK8), Muse, Quantitative real­time polymerase chain reaction (RT-qPCR), Western blotting, and Enzyme-linked immunosorbent assay (ELISA). RESULTS: The results showed that Rau can promote the proliferation and inhibit the apoptosis of the HT-29 cells-induced by LPS. Moreover, we observed that Rau can inhibit the expression of NOS2/JAK2/STAT3 in LPS-induced HT-29 cells. To further explore the role of NOS2 in UC progression, we used siRNA technology to knock down NOS2 and search for its mechanism in UC. The results illustrated that NOS2 knockdown can promote proliferation and inhibit the apoptosis of LPS-induced HT-29 cells by JAK2/STAT3 pathway. In addition, in vitro and in vivo experiments, we observed that the activation of the JAK2/STAT3 pathway can inhibit the effect of Rau on DSS-induced UC model. CONCLUSION: In short, Rauwolfia polysaccharide can inhibit the progress of ulcerative colitis through NOS2-mediated JAK2/STAT3 pathway. This study provides a theoretical clue for the treatment of UC by Rau.


Subject(s)
Alkaloids , Colitis, Ulcerative , Colitis , Rauwolfia , Animals , Mice , Alkaloids/pharmacology , Colitis/metabolism , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/genetics , Dextran Sulfate/toxicity , Disease Models, Animal , Lipopolysaccharides/pharmacology , Polysaccharides/metabolism
11.
Nat Cancer ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38609488

ABSTRACT

Tumor-specific T cells are crucial in anti-tumor immunity and act as targets for cancer immunotherapies. However, these cells are numerically scarce and functionally exhausted in the tumor microenvironment (TME), leading to inefficacious immunotherapies in most patients with cancer. By contrast, emerging evidence suggested that tumor-irrelevant bystander T (TBYS) cells are abundant and preserve functional memory properties in the TME. To leverage TBYS cells in the TME to eliminate tumor cells, we engineered oncolytic virus (OV) encoding TBYS epitopes (OV-BYTE) to redirect the antigen specificity of tumor cells to pre-existing TBYS cells, leading to effective tumor inhibition in multiple preclinical models. Mechanistically, OV-BYTE induced epitope spreading of tumor antigens to elicit more diverse tumor-specific T cell responses. Remarkably, the OV-BYTE strategy targeting human severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cell memory efficiently inhibited tumor progression in a human tumor cell-derived xenograft model, providing important insights into the improvement of cancer immunotherapies in a large population with a history of SARS-CoV-2 infection or coronavirus disease 2019 (COVID-19) vaccination.

12.
Arch Gynecol Obstet ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38625542

ABSTRACT

OBJECTIVE: We sought to analyze the genetic outcomes of fetuses with nuchal translucency (NT) > 95th centile, and determine whether prenatal genetic counseling, chromosomal microarray analysis (CMA) or non-invasive prenatal testing (NIPT) are truly beneficial for the outcomes of fetuses with increased NT > 95th centile and below 99th centile. MATERIALS AND METHODS: A total of 535 pregnant women were included in this study, with a fetal NT > 95th centile at 11-13+6 weeks of gestation from January 2017 to December 2020. 324 pregnant women with fetal NT > 95th centile and below 99th centile combined with other risk factors and NT > 99th centile received prenatal diagnostic karyotype analysis and CMA, and 211 pregnant women with fetal isolated increased NT > 95th centile and below 99th centile were selected to carry out NIPT. RESULTS: A total of 211 pregnant women who underwent NIPT were included in the study, NIPT results showed that 8 high-risk cases were confirmed by prenatal diagnosis. Overall, the detection rate of NIPT was 3.79%. A total of 324 pregnant women with fetal NT > 95th centile and below 99th centile, along with other risk factors, and those with fetal NT > 99th centile, received karyotype analysis and CMA for prenatal diagnosis. Among them, a total of 73 genetic abnormalities were detected, including 45 cases of chromosomal aneuploidy, 7 cases of structural abnormalities, and 21 cases of copy number variations (CNVs) with a size of less than 10 Mb. In addition, the 73 women with genetic abnormalities are divided into three groups based on the NT measurement (Group 1: Fetuses with NT > 95th centile and below 99th centile, Group 2: Fetuses with NT > 99th centile, and Group 3: Fetuses with NT > 99th centile). 13.11% (8/61) of pathogenic genetic abnormalities (6 chromosomal aneuploidy, 1 structural abnormality, and 1 likely pathogenic CNV) will be missed if genetic counseling and prenatal genetic testing were not conducted in fetuses with increased NT > 95th centile and below 99th centile combined with other risks. Pathogenic CNVs were the most common abnormalities in group 3, and one likely pathogenic CNV was detected in group 1 and group 3, respectively, and a total of 14 CNVs of unknown clinical significance (VOUS) were detected. CONCLUSIONS: Through this study, we demonstrated that the critical value of NT > 95th centile for invasive detection or NIPT. Invasive testing combined with CMA may be recommended for fetuses with NT > 95th centile and below 99th centile and with other risks. But when isolated NT > 95th centile and below 99th centile, NIPT would be appropriate.

13.
Curr Opin Oncol ; 36(3): 136-142, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38573202

ABSTRACT

PURPOSE OF REVIEW: Neoadjuvant (presurgical) immune checkpoint blockade (ICB) has shown promising clinical activity in head and neck cancer and other cancers, including FDA approvals for neoadjuvant approaches for triple-negative breast cancer and nonsmall cell lung cancer. Here we will review recent data from clinical trials in head and neck squamous cell carcinoma (HNSCC), including mechanistic studies highlighting local and systemic effects on T cell-mediated immunity. RECENT FINDINGS: A series of clinical trials of neoadjuvant ICB have documented evidence of clinical activity, including clinical to pathologic downstaging and pathologic response in a subset of patients. Also, emerging data suggest improved survival outcomes for patients with tumors responsive to neoadjuvant ICB. In depth mechanistic studies have documented intra-tumoral expansion of CD8 T cell populations characterized by tissue residency and cytotoxicity programs. Treatment also leads to expansion of activated CD8 T cells in the blood, many of which share TCR sequences with tumor-infiltrating T cells. The frequency of activated circulating CD8 T cell populations is correlated with the degree of pathologic response within tumors. SUMMARY: Even a short duration of neoadjuvant immunotherapy can enhance local and systemic tumor-reactive T cell populations. Downstaging induced by neoadjuvant ICB can reduce the extent of surgical resection in this anatomically sensitive location.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Head and Neck Neoplasms , Lung Neoplasms , Humans , Neoadjuvant Therapy , Immune Checkpoint Inhibitors , Head and Neck Neoplasms/drug therapy
14.
Adv Sci (Weinh) ; : e2309602, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38682481

ABSTRACT

Living organisms ranging from bacteria to animals have developed their own ways to accumulate and store phosphate during evolution, in particular as the polyphosphate (polyP) granules in bacteria. Degradation of polyP into phosphate is involved in phosphorus cycling, and exopolyphosphatase (PPX) is the key enzyme for polyP degradation in bacteria. Thus, understanding the structure basis of PPX is crucial to reveal the polyP degradation mechanism. Here, it is found that PPX structure varies in the length of ɑ-helical interdomain linker (ɑ-linker) across various bacteria, which is negatively correlated with their enzymatic activity and thermostability - those with shorter ɑ-linkers demonstrate higher polyP degradation ability. Moreover, the artificial DrPPX mutants with shorter ɑ-linker tend to have more compact pockets for polyP binding and stronger subunit interactions, as well as higher enzymatic efficiency (kcat/Km) than that of DrPPX wild type. In Deinococcus-Thermus, the PPXs from thermophilic species possess a shorter ɑ-linker and retain their catalytic ability at high temperatures (70 °C), which may facilitate the thermophilic species to utilize polyP in high-temperature environments. These findings provide insights into the interdomain linker length-dependent evolution of PPXs, which shed light on enzymatic adaption for phosphorus cycling during natural evolution and rational design of enzyme.

15.
Cell Mol Biol Lett ; 29(1): 59, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654156

ABSTRACT

Skeletal muscle is the largest metabolic organ of the human body. Maintaining the best quality control and functional integrity of mitochondria is essential for the health of skeletal muscle. However, mitochondrial dysfunction characterized by mitochondrial dynamic imbalance and mitophagy disruption can lead to varying degrees of muscle atrophy, but the underlying mechanism of action is still unclear. Although mitochondrial dynamics and mitophagy are two different mitochondrial quality control mechanisms, a large amount of evidence has indicated that they are interrelated and mutually regulated. The former maintains the balance of the mitochondrial network, eliminates damaged or aged mitochondria, and enables cells to survive normally. The latter degrades damaged or aged mitochondria through the lysosomal pathway, ensuring cellular functional health and metabolic homeostasis. Skeletal muscle atrophy is considered an urgent global health issue. Understanding and gaining knowledge about muscle atrophy caused by mitochondrial dysfunction, particularly focusing on mitochondrial dynamics and mitochondrial autophagy, can greatly contribute to the prevention and treatment of muscle atrophy. In this review, we critically summarize the recent research progress on mitochondrial dynamics and mitophagy in skeletal muscle atrophy, and expound on the intrinsic molecular mechanism of skeletal muscle atrophy caused by mitochondrial dynamics and mitophagy. Importantly, we emphasize the potential of targeting mitochondrial dynamics and mitophagy as therapeutic strategies for the prevention and treatment of muscle atrophy, including pharmacological treatment and exercise therapy, and summarize effective methods for the treatment of skeletal muscle atrophy.


Subject(s)
Mitochondrial Dynamics , Mitophagy , Muscle, Skeletal , Muscular Atrophy , Humans , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Muscular Atrophy/therapy , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Animals , Mitochondria/metabolism , Mitochondria/pathology
16.
BMC Med ; 22(1): 176, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664766

ABSTRACT

BACKGROUND: There is an urgent unmet need for effective initial treatment for acute graft-versus-host disease (aGVHD) adding to the standard first-line therapy with corticosteroids after allogeneic haematopoietic stem cell transplantation (allo-HSCT). METHODS: We performed a multicentre, open-label, randomized, phase 3 study. Eligible patients (aged 15 years or older, had received allo-HSCT for a haematological malignancy, developed aGVHD, and received no previous therapies for aGVHD) were randomly assigned (1:1) to receive either 5 mg/m2 MTX on Days 1, 3, or 8 and then combined with corticosteroids or corticosteroids alone weekly. RESULTS: The primary endpoint was the overall response rate (ORR) on Day 10. A total of 157 patients were randomly assigned to receive either MTX plus corticosteroids (n = 78; MTX group) or corticosteroids alone (n = 79; control group). The Day 10 ORR was 97% for the MTX group and 81% for the control group (p = .005). Among patients with mild aGVHD, the Day 10 ORR was 100% for the MTX group and 86% for the control group (p = .001). The 1-year estimated failure-free survival was 69% for the MTX group and 41% for the control group (p = .002). There were no differences in treatment-related adverse events between the two groups. CONCLUSIONS: In conclusion, mini-dose MTX combined with corticosteroids can significantly improve the ORR in patients with aGVHD and is well tolerated, although it did not achieve the prespecified 20% improvement with the addition of MTX. TRIAL REGISTRATION: The trial was registered with clinicaltrials.gov (NCT04960644).


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Methotrexate , Methylprednisolone , Humans , Graft vs Host Disease/drug therapy , Female , Male , Methotrexate/administration & dosage , Methotrexate/therapeutic use , Middle Aged , Adult , Methylprednisolone/therapeutic use , Methylprednisolone/administration & dosage , Hematopoietic Stem Cell Transplantation/adverse effects , Young Adult , Treatment Outcome , Drug Therapy, Combination , Aged , Adolescent , Acute Disease
17.
Microbiol Res ; 284: 127713, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38608339

ABSTRACT

Deinococcus radiodurans, with its high homologous recombination (HR) efficiency of double-stranded DNA breaks (DSBs), is a model organism for studying genome stability maintenance and an attractive microbe for industrial applications. Here, we developed an efficient CRISPR/Cpf1 genome editing system in D. radiodurans by evaluating and optimizing double-plasmid strategies and four Cas effector proteins from various organisms, which can precisely introduce different types of template-dependent mutagenesis without off-target toxicity. Furthermore, the role of DNA repair genes in determining editing efficiency in D. radiodurans was evaluated by introducing the CRISPR/Cpf1 system into 13 mutant strains lacking various DNA damage response and repair factors. In addition to the crucial role of RecA-dependent HR required for CRISPR/Cpf1 editing, D. radiodurans showed higher editing efficiency when lacking DdrB, the single-stranded DNA annealing (SSA) protein involved in the RecA-independent DSB repair pathway. This suggests a possible competition between HR and SSA pathways in the CRISPR editing of D. radiodurans. Moreover, off-target effects were observed during the genome editing of the pprI knockout strain, a master DNA damage response gene in Deinococcus species, which suggested that precise regulation of DNA damage response is critical for a high-fidelity genome editing system.


Subject(s)
CRISPR-Cas Systems , DNA Repair , Deinococcus , Gene Editing , Deinococcus/genetics , Gene Editing/methods , DNA Repair/genetics , Genome, Bacterial , DNA Breaks, Double-Stranded , Homologous Recombination , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Plasmids/genetics , Mutagenesis , Genomic Instability , Clustered Regularly Interspaced Short Palindromic Repeats , Rec A Recombinases/genetics , Rec A Recombinases/metabolism , DNA Damage
18.
Ecotoxicol Environ Saf ; 276: 116329, 2024 May.
Article in English | MEDLINE | ID: mdl-38626604

ABSTRACT

Due to continuous plantation of poplar, its growth and biomass accumulation may be negatively affected by the accumulation of allelochemicals such as para-hydroxybenzoic acid (pHBA) in soil. As photosynthesis is the most fundamental process in plants, it can be negatively impacted by pHBA stress. Therefore, it is crucial to improve photosynthetic capacity under pHBA stress to facilitate poplar plant growth. The mitogen-activated protein kinase (MAPK) cascade pathway is widely involved in environmental stress responses in plants. However, the regulation mechanisms of photosynthesis-related pathways by MAPK pathway genes under pHBA stress are still unclear. In this study, through transcriptome analysis and weighted gene co-expression network analysis, we observed that PeMPK7 overexpression in poplar can regulate the expression of photosynthesis-related genes and transcription factor genes, namely, WRKY1, WRKY33, and ERF3, during the early stage of pHBA stress. In addition, PeMPK7 can improve photosynthesis in poplar under long-term pHBA stress. Moreover, yeast two-hybrid and pull-down assays confirmed the interaction between PeMPK7 and PeMKK7/10. Based on these results, a schematic diagram of the pathways involved in the regulation of photosynthesis by PeMPK7 was constructed. This study provided novel insights into the molecular mechanisms of regulation of pHBA stress via MAPK cascade pathway.


Subject(s)
Gene Expression Regulation, Plant , Parabens , Photosynthesis , Populus , Populus/genetics , Populus/drug effects , Populus/physiology , Photosynthesis/drug effects , Gene Expression Regulation, Plant/drug effects , Stress, Physiological , Hydroxybenzoates , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Soil Pollutants/toxicity
19.
Front Pharmacol ; 15: 1373582, 2024.
Article in English | MEDLINE | ID: mdl-38515854

ABSTRACT

Objective: The aim of this study is to assess the postoperative efficacy of the combined administration of dienogest (DNG) and gonadotropin-releasing hormone agonists (GnRH-a) in patients diagnosed with endometriosis (EMS), while acknowledging the extensive use of DNG in the extended therapeutic management of EMS. Methods: In this retrospective study, a cohort of 154 patients who underwent conservative surgical intervention for EMS were scrutinized. The cohort was stratified into two distinct groups based on their prescribed pharmacological regimens. Group A, 70 patients received postoperative oral administration of DNG at a dosage of 2 mg/day, whereas Group B, 84 patients underwent treatment involving 3 to 4 injections of GnRH-a post-surgery, followed by DNG therapy. Parameters assessed included pelvic pain visual analog scale (VAS) scores, quality of life metrics (EHP-5), and the incidence of adverse reactions within both groups. Results: Both groups exhibited sustained low VAS scores following the prescribed treatments. The predominant occurrence of adverse bleeding patterns manifested predominantly within the initial 6 months of the treatment. Notably, Group B demonstrated a significantly diminished of experiencing frequent and irregular bleeding in comparison to the DNG group (20.0% vs. 8.3%, 12.9% vs. 3.6%, p < 0.05). The administration of GnRH-a did not exacerbate the impact on bone health. Subsequent to health promotion interventions, the incidence of weight gain in both groups declined to 7.1% during the 6-month follow-up (p < 0.05). Group B exhibited a 100% satisfaction rate with the treatment, concomitant with a noteworthy reduction in EHP-5 scores (p < 0.05). Patients with deep infiltrating endometriosis (DIE) nodules displayed marginally higher postoperative VAS scores than their non-DIE counterparts (0.89 ± 0.96 vs. 0.49 ± 0.78). However, with sustained medication use, pain scores within the DIE group exhibited a continual decrease, maintaining a low level of 0.29 ± 0.67 at 12 months and beyond. Conclusion: The short-term adjunctive use of GnRH-a prior to DNG treatment postoperatively in patients with EMS proves efficacious in mitigating early adverse bleeding, enhancing patient adherence, and improving overall quality of life. Notably, this therapeutic approach demonstrates favorable safety profiles and is equally effective in patients with DIE.

20.
Int Immunopharmacol ; 131: 111830, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38520788

ABSTRACT

Syringin (SRG) is a bioactive principle possessing extensive activities including scavenging of free radicals, inhibition of apoptosis, and anti-inflammatory properties. However, its effects on spermatogenic defects and testicular injury as well as the underlying mechanisms are still unclear. This study aims to investigate the protective effect of SRG on testis damage in zebrafish and explore its potential molecular events. Zebrafish testicular injury was induced by exposure to bisphenol A (BPA) (3000 µg/L) for two weeks. Fish were treated with intraperitoneal injection of SRG at different doses (5 and 50 mg/kg bodyweight) for two more weeks under BPA induction. Subsequently, the testis and sperm were collected for morphological, histological, biochemical and gene expression examination. It was found that the administration of SRG resulted in a significant protection from BPA-caused impact on sperm concentration, morphology, motility, fertility rate, testosterone level, spermatogenic dysfunction and resulted in increased apoptotic and reactive oxygen species' levels. Furthermore, testicular transcriptional profiling alterations revealed that the regulation of inflammatory response and oxidative stress were generally enriched in differentially expressed genes (DEGs) after SRG treatment. Additionally, it was identified that SRG prevented BPA-induced zebrafish testis injury through upregulation of fn1a, krt17, fabp10a, serpina1l and ctss2. These results indicate that SRG alleviated spermatogenic defects and testicular injury by suppressing oxidative stress and inflammation in male zebrafish.


Subject(s)
Glucosides , Phenols , Phenylpropionates , Semen , Zebrafish , Animals , Male , Oxidative Stress , Benzhydryl Compounds/toxicity , Inflammation/chemically induced , Inflammation/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...