Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Appl Opt ; 63(9): 2218-2226, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38568575

ABSTRACT

This paper introduces an optical-mechanical system designed for the dynamic detection and analysis of lunar dust, typically characterized as particles under 20 micrometers on the lunar surface. The system's design is both compact and lightweight, aligning with the payload constraints of lunar exploration missions. It is capable of real-time tracking and recording the motion of lunar dust at various altitudes, a crucial capability for understanding the environmental dynamics of the lunar surface. By capturing images and applying sophisticated algorithms, the system accurately measures the velocity and size of dust particles. This approach significantly advances the quantitative analysis of lunar dust, especially during agitation events, filling a critical gap in our current understanding of lunar surface phenomena. The insights gained from this study are not only pivotal for developing theoretical models of lunar surface air flow disturbances and dust movement but also instrumental in designing effective dust mitigation and hazard avoidance strategies for future lunar missions, thereby enhancing both scientific knowledge and the engineering applications in lunar exploration.

2.
Front Pharmacol ; 15: 1372296, 2024.
Article in English | MEDLINE | ID: mdl-38482059

ABSTRACT

Introduction: High concentrations of nonesterified fatty acids (NEFA) is the key of characteristic of fatty liver in dairy cows. Therefore, the aim of this study was to investigate the effect of high concentration of NEFA on lipid metabolism in hepatocytes through the lipidomic approach and molecular biology techniques. Methods: Stimulate AML-12 cells with different concentrations of NEFA, observe the cellular lipid accumulation, and select 0.6 mM NEFA stimulation concentration for subsequent experiments. Collect cells for lipidomics analysis. Results: High concentration of NEFA (0.6-2.4 mM) significantly reduced the cell viability in a concentration-dependent manner, indicating that high concentrations of NEFA have lipotoxicity on hepatocytes. In addition, NEFA promoted triglycerides (TAG) accumulation, increased the mRNA expression of the lipogenic molecules SREBP1c and FASN, and decreased the mRNA expression of lipolytic molecules CPT1A and HSL in hepatocytes. Mechanistically, high concentration of NEFA induced lipid metabolism disorders in hepatocytes by regulating metabolic pathways such as glycerol phospholipid metabolism, glycosyl phosphatidylinositol anchored biosynthesis, triglyceride metabolism, sphingolipid metabolism, and inositol phosphate metabolism. Discussion: High concentration of NEFA is lipotoxic to cells, promoting lipid accumulation. LPE (18:2), LPE (18:3), LPE (18:1) via glycerophospholipid metabolism, glycosylphosphatidylinositol (GPI)-anchor biosynthesis, glycerolipid metabolism, sphingolipid metabolism, and inositol phosphate metabolism, indicating their potential regulation role in the pathogenesis of fatty liver.

3.
Mar Pollut Bull ; 201: 116169, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38428046

ABSTRACT

The surface sediments as a repository of pelagic environment changes and microbial community structural succession tend to have a profound effect on global and local nitrogen and sulfur cycling. In this study, analysis of sediment samples collected from the Bohai Sea, Yellow Sea, and north of the East China Seas (BYnECS) revealed longitude, latitude, depth, and chlorophyll had the strongest influence on microbial community structure (p-values < 0.005). A clear distance-decay pattern was exhibited in BYnECS. The result of co-occurrence network modularization implied that the more active pathway in winter was thiosulfate reduction and nitrate reduction, while in summer it was nitrification. The potential functional genes were predicted in microbial communities, and the most dominant genes were assigned to assimilatory sulfur reduction, denitrification, and dissimilatory nitrate reduction. This study innovatively explored the potential relationships between nitrogen and sulfur cycling genes of these three sea regions in the China Sea.


Subject(s)
Geologic Sediments , Nitrates , Geologic Sediments/chemistry , Nitrates/metabolism , Nitrogen , Seasons , Sulfur , China
4.
Skin Res Technol ; 30(1): e13549, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38174781

ABSTRACT

BACKGROUND: Diabetic foot ulcer (DFU) is a common and serious complication of diabetes, and its treatment is challenging. Platelet-rich plasma (PRP) gel and umbilical cord mesenchymal stem cells (UC-MSCs) gel have been concerned as new therapies for DFU in recent years, and comparative studies on the efficacy and mechanisms of these methods, however, are rarely reported. METHODS: Thirty patients with DFU were selected and divided into the PRP group and the UC-MSCs group, and wound healing, foot blood vessels (ABI index), infection index (CRP), neuropathy symptoms (TCSS score), and foot skin temperature before and after treatment were compared between the two groups. SPSS 21.0 was used for statistical analysis. RESULTS: The results showed that the efficacy of the UC-MSCs gel group was significantly better than that of the PRP group in terms of wound healing rate, time to complete wound closure, ABI index, CRP level and TCSS score. No statistically significant difference in foot skin temperature was observed between the two groups. CONCLUSION: The efficacy of UC-MSCs gel is significantly superior to that of PRP gel in the treatment of DFU, with shortened time to complete wound closure, increased wound healing rate, better pain and infection control, and improved vascular and neurological symptoms.


Subject(s)
Diabetic Foot , Mesenchymal Stem Cells , Platelet-Rich Plasma , Humans , Diabetic Foot/therapy , Skin , Umbilical Cord
5.
Int J Neuropsychopharmacol ; 27(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38135278

ABSTRACT

BACKGROUND: Melanin-concentrating hormone (MCH) is a hypothalamic neuropeptide that projects throughout the central nervous system, including the noradrenergic locus coeruleus (LC). Our previous study suggested that MCH/MCH receptor 1 (MCHR1) in the LC may be involved in the regulation of depression. The present study investigated whether the role of MCH/MCHR1 in the LC in depression-like behaviors is associated with the regulation of norepinephrine. METHOD: Chronic unpredictable stress (CUS) and an acute intra-LC microinjection of MCH induced depression-like behaviors in rats. The MCHR1 antagonist SNAP-94847 was also microinjected in the LC in rats that were suffering CUS or treated with MCH. The sucrose preference, forced swim, and locomotor tests were used for behavioral evaluation. Immunofluorescence staining, enzyme-linked immunosorbent assay, western blot, and high-performance liquid chromatography with electrochemical detection were used to explore the mechanism of MCH/MCHR1 in the regulation of depression-like behaviors. RESULTS: CUS induced an abnormal elevation of MCH levels and downregulated MCHR1 in the LC, which was highly correlated with the formation of depression-like behaviors. SNAP-94847 exerted antidepressant effects in CUS-exposed rats by normalizing tyrosine hydroxylase, dopamine ß hydroxylase, and norepinephrine in the LC. An acute microinjection of MCH induced depression-like behaviors through its action on MCHR1. MCHR1 antagonism in the LC significantly reversed the MCH-induced downregulation of norepinephrine production by normalizing MCHR1-medicated cAMP-PKA signaling. CONCLUSIONS: Our study confirmed that the MCH/MCHR1 system in the LC may be involved in depression-like behaviors by downregulating norepinephrine production. These results improve our understanding of the pathogenesis of depression that is related to the MCH/MCHR1 system in the LC.


Subject(s)
Hypothalamic Hormones , Locus Coeruleus , Rats , Animals , Depression/chemically induced , Depression/drug therapy , Norepinephrine , Hypothalamic Hormones/metabolism , Pituitary Hormones/pharmacology , Melanins/pharmacology
6.
Int Immunopharmacol ; 124(Pt B): 110974, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37757633

ABSTRACT

CAR-T targeting CD19 have achieved significant effects in the treatment of B-line leukemia and lymphoma. However, the treated patients frequently relapsed and could not achieve complete remission. Therefore, improving the proliferation and cytotoxicity of CAR-T cells, reducing exhaustion and enhancing infiltration capacity are still issues to be solved. The IL-7 has been shown to enhance the memory characteristics of CAR-T cells, but the specific mechanism has yet to be elaborated. miRNAs play an important role in T cell activity. However, whether miRNA is involved in the activation of CAR-T cells by IL-7 has not yet been reported. Our previous study had established the 3rd generation CAR-T cells. The present study further found that IL-7 significantly increased the proliferation of anti-CD19 CAR-T cells, the ratio of CD4 + CAR + cells and the S phase of cell cycle. In vivo study NAMALWA xenograft model showed that IL-7-stimulated CAR-T cells possessed stronger tumoricidal efficiency. Further we validated that IL-7 induced CAR-T cells had low expression of CDKN1A and high expression of miRNA-98-5p. Additionally, CDKN1A was associated with miRNA-98-5p. Our results, for the first time, suggested IL-7 could conspicuously enhance the proliferation of CAR-T cells through miRNA-98-5p targeting CDKN1A expression, which should be applied to CAR-T production.


Subject(s)
MicroRNAs , Receptors, Chimeric Antigen , Humans , Receptors, Chimeric Antigen/metabolism , Immunotherapy, Adoptive/methods , Interleukin-7/genetics , Interleukin-7/metabolism , MicroRNAs/genetics , Cell Proliferation , Antigens, CD19/genetics , Antigens, CD19/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism
7.
Angew Chem Int Ed Engl ; 62(38): e202309443, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37523150

ABSTRACT

By supporting platinum (Pt) and cadmium sulfide (CdS) nanoparticles on indium oxide (In2 O3 ), we fabricated a CdS/Pt/In2 O3 photocatalyst. Selective photoreduction of carbon dioxide (CO2 ) to methane (CH4 ) was achieved on CdS/Pt/In2 O3 with electronic Pt-In2 O3 interactions, with CH4 selectivity reaching to 100 %, which is higher than that on CdS/Pt/In2 O3 without electronic Pt-In2 O3 interactions (71.7 %). Moreover, the enhancement effect of electronic Pt-(metal-oxide) interactions on selective photoreduction of CO2 to CH4 also occurs by using other common metal oxides, such as photocatalyst supports, including titanium oxide, gallium oxide, zinc oxide, and tungsten oxide. The electronic Pt-(metal-oxide) interactions separate photogenerated electron-hole pairs and convert CO2 into CO2 δ- , which can be easily hydrogenated into CH4 via a CO2 δ- →HCOO*→HCO*→CH*→CH4 path, thus boosting selective photoreduction of CO2 to CH4 . This offers a new way to achieve selective photoreduction of CO2 .

8.
Front Oncol ; 13: 1122669, 2023.
Article in English | MEDLINE | ID: mdl-36726382

ABSTRACT

Background: Expansion and activation of cytotoxic T lymphocytes (CTLs) in vitro represents a promising immunotherapeutic strategy, and CTLs can be primed by dendritic cells (DCs) loaded with tumor-associated antigens (TAAs) transformed by recombinant adeno-associated virus (rAAV). This study aimed to explore the impact of rAAV-DC-induced CTLs on prognosis of CRC and to explore factors associated with prognosis. Methods: This prospective observational study included patients operated for CRC at Yan'an Hospital Affiliated to Kunming Medical University between 2016 and 2019. The primary outcome was progression-free survival (PFS), secondary outcomes were overall survival (OS) and adverse events. Totally 49 cases were included, with 29 and 20 administered rAAV-DC-induced CTL and chemotherapy, respectively. Results: After 37-69 months of follow-up (median, 54 months), OS (P=0.0596) and PFS (P=0.0788) were comparable between two groups. Mild fever occurred in 2 (6.9%) patients administered CTL infusion. All the chemotherapy group experienced mild-to-moderate adverse effects, including vasculitis (n=20, 100%), vomiting (n=5, 25%), nausea (n=17, 85%) and fatigue (n=17, 85%). Conclusions: Lymphatic metastasis (hazard ratio [HR]=4.498, 95% confidence interval [CI]: 1.290-15.676; P=0.018) and lower HLA-I expression (HR=0.294, 95%CI: 0.089-0.965; P=0.044) were associated with poor OS in the CTL group. CTLs induced by rAAV-DCs might achieve comparable effectiveness in CRC patients compare to chemotherapy, cases with high tumor-associated HLA-I expression and no lymphatic metastasis were more likely to benefit from CTLs.

9.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-36652259

ABSTRACT

We analyzed the effects of Glycyrrhiza polysaccharide (GCP) on growth performance, appetite, and hypothalamic inflammation-related indexes in broilers. One-day-old male AA broilers were randomly divided into four groups: Control, L-GCP, M-GCP, and H-GCP (0, 300, 600, and 900 mg GCP/kg feed), with six repetition cages for each treatment and 12 broilers in each repeat for a period of 42 days. From day 1 to day 21, the addition of GCP to the diet significantly improved the ADFI and the ADG of broilers, and the mRNA levels of NPY and AgRP were significantly increased while POMC and CART were decreased in the hypothalamus of broilers; GCP also significantly decreased the mRNA levels of IL-1ß, IL-6, TNF-α, TLR-4, MyD88, and NF-κB, and increased the IL-4 and IL-10 in the hypothalamus from day 1 to day 42. The concentrations of appetite-related factors and inflammatory factors in serum were changed in the same fashion. Supplementation with 600 mg/kg GCP had the optimal effect in broilers, and GCP has the potential to be used as a feed additive in the poultry production industry.


In this work, we analyzed the effects of Glycyrrhiza polysaccharide on growth performance, appetite, and hypothalamic inflammation in broilers. In the past, antibiotics were added to poultry feed to prevent disease and improve growth performance; however, the extensive use of antibiotics can negatively affect livestock and poultry, and endanger the health of consumers. Glycyrrhiza polysaccharide has many biological activities. In order to explore the possibility of Glycyrrhiza polysaccharide as a substitute for antibiotics, we evaluated the effects of Glycyrrhiza polysaccharide added to the diet of broilers for 42 days. Our research confirmed that Glycyrrhiza polysaccharide supplementation increased food intake by regulating appetite-related factors in hypothalamus and serum, and also alleviated inflammation.


Subject(s)
Chickens , Glycyrrhiza , Male , Animals , Appetite , Inflammation/veterinary , Diet/veterinary , Polysaccharides/pharmacology , Hypothalamus , Animal Feed/analysis , Dietary Supplements
10.
Clin Neurol Neurosurg ; 223: 107475, 2022 12.
Article in English | MEDLINE | ID: mdl-36274549

ABSTRACT

Multiple sclerosis (MS) is one of the most common idiopathic inflammatory demyelinating disease. One of the challenges in the treatment of MS is how to overcome relapses without severe adverse effects. Due to their immunoregulatory properties and safety, mesenchymal stem cells (MSCs), present a potential alternative for treatment for MS. The efficacy and safety of a long-term MSCs therapy in MS remain to be established. In this communication, we report the clinical condition and disease progression of an MS patient treated for 11 years, with multiple infusions of MSCs derived from either his bone marrow (BM), pooled human umbilical cords (UC), or from his own child umbilical cord. A male patient diagnosed as progressive MS (EDSS score 3) was enrolled into our study and received 1 × 106 cells/kg of MSCs, at least once a year for 9 years. The MSCs treatment was well tolerated with no significant side effects. Following the transplantation of MSCs, the overall EDSS scores of the patient decreased over the 10 years period of observation. MRI investigation did not reveal any new lesions. However, upon the cessation of the MSCs treatment, the EDSS score increased from 1.0 to 3.5, further supporting the notion that in such a patient, the transplantation of MSCs, had a significant beneficial effect. This case study is the first to report on the beneficial effects of multiple infusions of BM-MSC and umbilical cord mesenchymal stem cells (UC-MSCs) in a progressive MS patient, over a period of 11 years, in absence of any other treatments. Hence, multiple infusions of MSCs may provide a novel therapeutic avenue for patients with aggressive MS.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Multiple Sclerosis, Chronic Progressive , Multiple Sclerosis , Humans , Male , Multiple Sclerosis/drug therapy , Multiple Sclerosis, Chronic Progressive/therapy , Treatment Outcome , Umbilical Cord
11.
J Oncol ; 2022: 9016296, 2022.
Article in English | MEDLINE | ID: mdl-36185620

ABSTRACT

Purpose: It was reported that the EGFR (epidermal growth factor receptor) mutation status was related to primary immune resistance in NSCLC (non-small-cell lung cancer). ICIs (immune checkpoint inhibitors) have poor efficacy and large side effects for people with EGFR mutation. EGFR mutation was considered as a sign of immune therapeutic resistance, but its underlying mechanism is difficult to be determined. Combined with our research basis, we tried to explore the possible mechanism of primary drug resistance in EFGR mutant lung adenocarcinoma through the interaction between the JAK/STAT1 and JAK/STAT3 pathway. Materials and Methods: Cell apoptosis and viability test were used to study the role of the JAK/STAT signalling pathway in lung adenocarcinoma cell survival. Western blot, RT-PCR, and flow cytometry were employed to explore the changes of expression in JAK1/2, STAT1/3, PD-L1, and related signal molecules in the case of activation or inhibition of the JAK/STAT3 signalling pathway. Results: With inhibition of inhibiting the JAK/STAT3 signalling pathway by STAT3 inhibitors, we found IFNγ-JAK-STAT1 pathway activation by IFNγ could further keep lung adenocarcinoma cells from proliferation and promote its apoptosis. The inhibition of the JAK/STAT3 pathway results in the upregulation of JAK1/2, STAT1, IRF1, IRF9, and PD-L1 and downregulation of STAT3 and SOCS1. Conclusions: The absence of the IFNγ-JAK-STAT1 signal pathway is one of the main mechanisms for the ICI endogenous resistance. The abnormal activation of the downstream JAK/STAT3 pathway in cells with EGFR mutation may have antagonistic effects on the STAT1 induced antitumor immune response, which may cause the IFNγ-JAK-STAT1 pathway to lose its function. The mechanism may result in production of the immune tolerance of the EGFR mutant, which promotes immune escape.

12.
Langmuir ; 38(40): 12179-12188, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36170049

ABSTRACT

Lead ion (Pb2+) is one of the most common water pollutants. Herein, with bamboo as the raw material, we fabricate a thin-walled hollow ellipsoidal carbon-based adsorbent (CPCs900) containing abundant O-containing groups and carbon defects and having a specific surface area as large as 730.87 m2 g-1. CPCs900 shows a capacity of 37.26 mg g-1 for adsorbing Pb2+ in water and an efficiency of 98.13% for removing Pb2+ from water. This is much better than the activated carbon commonly used for removing Pb2+ from water (12.19 mg g-1, 30.48%). The bond interaction of Pb2+ with the O-containing groups on CPCs900 and the electrostatic interaction of Pb2+ with the electron-rich carbon defects on CPCs900 could be the main forces to drive Pb2+ adsorption on CPCs900. The outstanding adsorption performance of CPCs900 could be due to the abundant O-containing groups and carbon defects as well as the large specific surface area of CPCs900. Bamboo has a large reserve and a low price. The present work successfully converts bamboo into adsorbents with outstanding performances in removing Pb2+ from water. This is of great significance for meeting the huge industrial demand on highly efficient adsorbents for removing toxic metal ions from water.


Subject(s)
Water Pollutants, Chemical , Water Pollutants , Adsorption , Charcoal/chemistry , Hydrogen-Ion Concentration , Ions , Kinetics , Lead , Water , Water Pollutants, Chemical/analysis
13.
Phytother Res ; 36(12): 4587-4603, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35916377

ABSTRACT

Andrographolide(ADE) has been demonstrated to inhibit tumor growth through direct cytotoxicity on tumor cells. However, its potential activity on tumor microenvironment (TME) remains unclear. Tumor-associated macrophages (TAMs), composed mainly of M2 macrophages, are the key cells that create an immunosuppressive TME by secretion of cytokines, thus enhancing tumor progression. Re-polarized subpopulations of macrophages may represent vital new therapeutic alternatives. Our previous studies showed that ADE possessed anti-metastasis and anoikis-sensitization effects. Here, we demonstrated that ADE significantly suppressed M2-like polarization and enhanced M1-like polarization of macrophages. Moreover, ADE inhibited the migration of M2 and tube formation in HUVECs under M2 stimulation. In vivo studies showed that ADE restrained the growth of MDA-MB-231 and HCC1806 human breast tumor xenografts and 4T-1 mammary gland tumors through TAMs. Wnt5a/ß-catenin pathway and MMPs were particularly associated with ADE's regulatory mechanisms to M2 according to RNA-seq and bioinformatics analysis. Moreover, western blot also verified the expressions of these proteins were declined with ADE exposure. Among the cytokines released by M2, PDGF-AA and CCL2 were reduced. Our current findings for the first time elucidated that ADE could modulate macrophage polarization and function through Wnt5a signaling pathway, thereby playing its role in inhibition of triple-negative breast cancer.


Subject(s)
Breast Neoplasms , Diterpenes , Wnt Signaling Pathway , Female , Humans , beta Catenin , Breast Neoplasms/drug therapy , Tumor Microenvironment , Tumor-Associated Macrophages , Diterpenes/pharmacology , Human Umbilical Vein Endothelial Cells , MDA-MB-231 Cells , Animals
14.
Biotechnol Genet Eng Rev ; 38(2): 270-287, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35775836

ABSTRACT

In the long process of human evolution, the Intestinal Bacteria has become intimately related to human health, producing many metabolites in the intestines that can affect cardiovascular disease. Today, the incidence of cardiovascular disease is rising, its treatment is becoming increasingly important, and new therapeutic targets are needed. Here we describe the effects of trimethylamine oxide (TMAO), lipid metabolism, phenolic compounds, indole sulfate (IS), oleuropein (OL), and hydroxytyrosol (HT) on atherosclerosis, heart failure, hypertension, and other cardiovascular diseases, as well as their mechanism of action. This study provides new ideas, new methods, and new directions for the treatment of cardiovascular disease.


Subject(s)
Cardiovascular Diseases , Heart Failure , Hypertension , Humans , Intestines/microbiology , Bacteria/metabolism
15.
Front Cell Dev Biol ; 10: 876054, 2022.
Article in English | MEDLINE | ID: mdl-35478960

ABSTRACT

The therapeutic effects and mechanism of umbilical cord mesenchymal stem cells (UC-MSC) on kidney injury in MRL/Ipr mice were studied. UC-MSC, methylprednisolone (MP), and their combination were used to treat MRL/Ipr mice. The therapeutic effects were evaluated by renal function assessment, and HE, PAS, and Masson staining were carried out on renal tissues and visualized by electron microscopy. Subsequently, podocyte injury was detected by the presence of podocin in renal tissues by immunofluorescence. To further explore the mechanism, serum TGF-ß1 was measured, and TGF-ß1, p-Smad3, and TRAF6 in the renal tissue were detected by Western blotting. In vitro, TGF-ß1 was used to stimulate podocytes, and the podocyte activity and changes in synaptopodin were observed after UC-MSC treatment. Significant improvements in renal function and pathological injury were observed in the UC-MSC group compared to the lupus nephritis (LN) model group. UC-MSC and MP treatment improved podocyte injury in MRL/Ipr mice. Western blot examination showed a significant increase in TGF-ß1, p-Smad3, and TRAF6 expression in renal tissues of the LN model group, while significant downregulation of those proteins was observed in the UC-MSC group. After TGF-ß1 stimulation in vitro, podocyte activity decreased, and UC-MSC treatment improved podocyte activity and restored synaptopodin expression. UC-MSC therapy could improve the deterioration of renal function and the pathological changes of the renal tissues in MRL/Ipr mice. Our study suggested that UC-MSC may improve kidney injury and podocyte injury in LN mice by inhibiting the TGF-ß1 pathway.

16.
Transl Oncol ; 16: 101331, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34974280

ABSTRACT

BACKGROUND: Gallbladder cancer (GBC) is a highly lethal malignancy that carries an extremely poor prognosis due to its chemoresistant nature. Cisplatin (CDDP) is a first-line chemotherapeutic for GBC; however, patients experienced no benefit when treated with CDDP alone. The underlying mechanisms of CDDP resistance in GBC remain largely unknown. METHODS: Agilent mRNA microarray analysis was performed between paired GBC and paracarcinoma to explore differentially expressed genes that might underlie drug resistance. Gene Set Enrichment Analysis (GSEA) was employed to identify key genes mediating CDDP resistance in GBC, and immunohistochemistry was performed to validate protein expression and test correlations with clinicopathological features. In vitro and in vivo functional assays were performed to investigate the proteins' roles in CDDP resistance. RESULTS: Olfactomedin 4 (OLFM4) was differentially expressed between GBC and paracarcinoma and had the highest rank metric score in the GSEA. OLFM4 expression was increasingly upregulated from chronic cholecystitis to GBC in clinical tissue samples, and OLFM4 depletion decreased GBC cell proliferation and invasion. Interestingly, downregulation of OLFM4 reduced ARL6IP1 (antiapoptotic factor) expression and sensitized GBC cells to CDDP both in vitro and in vivo. The evidence indicated that CDDP could significantly increase Bax and Bad expression and activate caspase-3 cascade in OLFM4-depleted GBC cells through ARL6IP1. Clinically, lower OLFM4 expression was associated with good prognosis of GBC patients. CONCLUSIONS: Our results suggest that OLFM4 is an essential gene that contributes to GBC chemoresistance and could serve as a prognostic biomarker for GBC. Importantly, OLFM4 could be a potential chemotherapeutic target.

17.
J Chromatogr Sci ; 60(5): 450-457, 2022 Jun 06.
Article in English | MEDLINE | ID: mdl-34286839

ABSTRACT

Traditional Chinese medicines (TCMs) have been considered as important alternative therapeutics because of their significant medicinal benefits in specific diseases. Chinese herb formula is characterized by a vast molecule that differs in routine medicines. Due to TCMs chemical complexity, proper quality control has been a great challenge. Choosing the appropriate method to identify and qualify these compounds is an important work to ensure its safety, efficacy and quality control. Thus, this study aimed at providing novel information on high-resolution LTQ-Orbitrap mass spectrometer (UPLC-LTQ-Orbitrap-MSn) based identification of Bu Shen Yi Sui capsule (BSYSC), which is used in treating multiple sclerosis as a kind of TCMs. Under the proposed chromatographic conditions, 80 chemical components classified as anthraquinone, phenolic acid and phenylethanoid glycosides were separated and identified from BSYSC. Coupled with the high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS/MS) method, eight of them were regarded as marker compounds for the quantitative evaluation of BSYSC. The identification and quantification with precision of UPLC-LTQ-Orbitrap-MSn and UPLC-QTOF-MS/MS could facilitate essential data for further pharmacokinetic studies of BSYSC.


Subject(s)
Drugs, Chinese Herbal , Tandem Mass Spectrometry , Busulfan , Chromatography, High Pressure Liquid/methods , Quality Control
18.
Article in English | MEDLINE | ID: mdl-38625289

ABSTRACT

This paper examines the impacts of local housing sentiments on the housing price dynamics of China. With a massive second-hand transaction dataset, we construct monthly local housing sentiment indices for 18 major cities in China from January 2016 to October 2020. We create three sentiment proxies representing the local housing market liquidity and speculative behaviors from the transaction dataset and then use partial least squares (PLS) to extract a recursive look-ahead-bias-free local housing sentiment index for each city considered. The local housing sentiments are shown to have robust predictive powers for future housing returns with a salient short-run underreaction and long-run overreaction pattern. Further analysis shows that local housing sentiment impacts are asymmetric, and housing returns in cities with relatively inelastic housing supply are more sensitive to local housing sentiments. We also document a significant feedback effect between housing returns and market sentiments, indicating the existence of a pricing-sentiment spiral which could potentially enhance the ongoing market fever of Chinese housing markets. The main estimation results are robust to alternative sentiment extraction methods and alternative sentiment proxies, and consistent for the sample period before COVID-19.

19.
Sci Adv ; 7(46): eabj1569, 2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34767454

ABSTRACT

China's stature as the world's major producer and consumer of seafood is legendary, but its long-standing tradition of protecting marine life domestically is virtually unknown. We present the most comprehensive database on area-based marine conservation in China including 326 sites that conserve 12.98% of China's seas and address 142 conservation objectives. Twenty-two percent of shallow habitats (<10 meters) were fully or highly protected and 20% of waters 10 to 50 meters deep were conserved to some degree. Ecosystems in deeper waters (>50 meters) are critical to protect, yet <5% of these waters in China were conserved, primarily in areas with the highest chlorophyll-α concentrations. Habitats such as underwater canyons and seamounts beyond the continental shelf had no area-based protection. While China has made progress in marine protection within its boundaries, there is more work to be done to ensure that the full suite of marine life is safeguarded.

20.
J Healthc Eng ; 2021: 5709104, 2021.
Article in English | MEDLINE | ID: mdl-34540187

ABSTRACT

Cytokine-induced killer (CIK) cells have been proved to be an effective method of tumor immunotherapy in numerous preclinical and clinical studies. In our previous study, a new method was developed to prime and propagate CIK cells by the combination of IL-2 and IL-15, and this kind of CIK cells had enhanced antitumor effect on lung cancer. For renal cell carcinoma (RCC), immunotherapy plays an important role because of the poor efficacy of radiotherapy and chemotherapy. In this study, we further evaluated the antitumor effects of these enhanced CIK cells against RCC. Enhanced CIK cells were generated by IL-2 combined with IL-15 and identified by flow cytometry. HEK-293 and ACHN cell lines were used to verify the efficiency of CIK cells in vitro, and then the ACHN tumor xenograft model was also employed for in vivo study. In addition, the secreted cytokines including IFN-γ, granzyme B, TNF-α, and perforin, as well as the local microstructure were also studied. Subsequently, 20 patients with RCC were enrolled into our study, and 11 patients were randomly divided into the autologous CIK treatment group for clinical research. The results showed that enhanced CIK cells exert better antitumor effects in RCC in vitro (p < 0.01 in HEK-293 and p < 0.05 in ACHN)and in vivo (p < 0.05). Patients benefit overall survival from enhanced CIK therapy in our clinical study. Our present preclinical and clinical studies for the first time elucidated that these enhanced CIK cells would be used as an effective adjuvant therapy in the treatment of RCC.


Subject(s)
Carcinoma, Renal Cell , Cytokine-Induced Killer Cells , Kidney Neoplasms , Carcinoma, Renal Cell/therapy , HEK293 Cells , Humans , Immunotherapy , Kidney Neoplasms/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...