Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccine ; 41(35): 5097-5112, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37270367

ABSTRACT

The B.1.1.529 (Omicron) variant surge has raised concerns about the effectiveness of vaccines and the impact of imprudent reopening. Leveraging over two years of county-level COVID-19 data in the US, this study aims to investigate relationships among vaccination, human mobility, and COVID-19 health outcomes (assessed via case rate and case-fatality rate), controlling for socioeconomic, demographic, racial/ethnic, and partisan factors. A set of cross-sectional models was first fitted to empirically compare disparities in COVID-19 health outcomes before and during the Omicron surge. Then, time-varying mediation analyses were employed to delineate how the effects of vaccine and mobility on COVID-19 health outcomes vary over time. Results showed that vaccine effectiveness against case rate lost significance during the Omicron surge, while its effectiveness against case-fatality rate remained significant throughout the pandemic. We also documented salient structural inequalities in COVID-19-related outcomes, with disadvantaged populations consistently bearing a larger brunt of case and death tolls, regardless of high vaccination rates. Last, findings revealed that mobility presented a significantly positive relationship with case rates during each wave of variant outbreak. Mobility substantially mediated the direct effect from vaccination to case rate, leading to a 10.276 % (95 % CI: 6.257, 14.294) decrease in vaccine effectiveness on average. Altogether, our study implies that sole reliance on vaccination to halt COVID-19 needs to be re-examined. Well-resourced and coordinated efforts to enhance vaccine effectiveness, mitigate health disparity and selectively loosen non-pharmaceutical interventions are essential to bringing the pandemic to an end.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Cross-Sectional Studies , COVID-19/epidemiology , COVID-19/prevention & control , Vaccination , Disease Outbreaks
2.
ACS Appl Mater Interfaces ; 11(30): 26789-26797, 2019 Jul 31.
Article in English | MEDLINE | ID: mdl-31283175

ABSTRACT

The development of a suitable catalyst for the oxygen reduction reaction (ORR), the cathode reaction of proton exchange membrane fuel cells (PEMFC), is necessary to push this technology toward widespread adoption. There have been substantial efforts to utilize bimetallic Pt-M alloys that adopt the ordered face-centered tetragonal (L10) phase in order to reduce the usage of precious metal, enhance the ORR performance, and improve catalyst stability. In this work, monodisperse Pt-Co nanocrystals (NCs) with well-defined size (4-5 nm) and cobalt composition (25-75 at%) were synthesized via colloidal synthesis. The transformation from the chemically disordered A1 (face-centered cubic, fcc) to the L10 phase was achieved via thermal annealing using both a conventional oven and a rapid thermal annealing process. The structure of the Pt-Co catalysts was characterized by a variety of techniques, including transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy in high-angle annular dark-field scanning transmission electron microscopy (STEM-EDS), small-angle X-ray scattering (SAXS), X-ray diffraction (XRD), and inductively coupled plasma-optical emission spectrometry (ICP-OES). The effects of annealing temperature on the composition-dependent degree of ordering and subsequent effect on ORR activity is described. This work provides insights regarding the optimal spatial distribution of elements at the atomic level to achieve enhanced ORR activity and stability.

SELECTION OF CITATIONS
SEARCH DETAIL
...