Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 7(1): 18, 2024 01 05.
Article in English | MEDLINE | ID: mdl-38177713

ABSTRACT

Mitochondrial transcription termination factor 3 (MTERF3) negatively regulates mitochondrial DNA transcription. However, its role in hepatocellular carcinoma (HCC) progression remains elusive. Here, we investigate the expression and function of MTERF3 in HCC. MTERF3 is overexpressed in HCC tumor tissues and higher expression of MTERF3 positively correlates with poor overall survival of HCC patients. Knockdown of MTERF3 induces mitochondrial dysfunction, S-G2/M cell cycle arrest and apoptosis, resulting in cell proliferation inhibition. In contrast, overexpression of MTERF3 promotes cell cycle progression and cell proliferation. Mechanistically, mitochondrial dysfunction induced by MTERF3 knockdown promotes ROS accumulation, activating p38 MAPK signaling pathway to suppress HCC cell proliferation. In conclusion, ROS accumulation induced by MTERF3 knockdown inhibits HCC cell proliferation via p38 MAPK signaling pathway suggesting a promising target in HCC patients.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Mitochondrial Diseases , Mitochondrial Proteins , Transcription Factors , Humans , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation , Liver Neoplasms/pathology , p38 Mitogen-Activated Protein Kinases/metabolism , Reactive Oxygen Species/metabolism , Transcription Factors/genetics , Mitochondrial Proteins/genetics
2.
Cell Death Dis ; 14(2): 89, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36750557

ABSTRACT

Ribosome biogenesis (RiBi) plays a pivotal role in carcinogenesis by regulating protein translation and stress response. Here, we find that RRP15, a nucleolar protein critical for RiBi and checkpoint control, is frequently upregulated in primary CRCs and higher RRP15 expression positively correlated with TNM stage (P < 0.0001) and poor survival of CRC patients (P = 0.0011). Functionally, silencing RRP15 induces ribosome stress, cell cycle arrest, and apoptosis, resulting in suppression of cell proliferation and metastasis. Overexpression of RRP15 promotes cell proliferation and metastasis. Mechanistically, ribosome stress induced by RRP15 deficiency facilitates translation of TOP mRNA LZTS2 (Leucine zipper tumor suppressor 2), leading to the nuclear export and degradation of ß-catenin to suppress Wnt/ß-catenin signaling in CRC. In conclusion, ribosome stress induced by RRP15 deficiency inhibits CRC cell proliferation and metastasis via suppressing the Wnt/ß-catenin pathway, suggesting a potential new target in high-RiBi CRC patients.


Subject(s)
Colorectal Neoplasms , beta Catenin , Humans , Cell Line, Tumor , beta Catenin/metabolism , Colorectal Neoplasms/pathology , Cell Proliferation/genetics , Ribosomes/metabolism , Wnt Signaling Pathway/genetics , Gene Expression Regulation, Neoplastic , Cell Movement/genetics , DNA-Binding Proteins/metabolism , Cell Cycle Proteins/metabolism , Tumor Suppressor Proteins/metabolism
3.
J Mol Endocrinol ; 70(1)2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36356262

ABSTRACT

The pathogenesis of nonalcoholic steatohepatitis (NASH), a severe stage of nonalcoholic fatty liver disease, is complex and implicates multiple cell interactions. However, therapies for NASH that target multiple cell interactions are still lacking. Melatonin (MEL) alleviates NASH with mechanisms not yet fully understood. Thus, we herein investigate the effects of MEL on key cell types involved in NASH, including hepatocytes, macrophages, and stellate cells. In a mouse NASH model with feeding of a methionine and choline-deficient (MCD) diet, MEL administration suppressed lipid accumulation and peroxidation, improved insulin sensitivity, and attenuated inflammation and fibrogenesis in the liver. Specifically, MEL reduced proinflammatory cytokine expression and inflammatory signal activation and attenuated CD11C+CD206- M1-like macrophage polarization in the liver of NASH mice. The reduction of proinflammatory response by MEL was also observed in the lipopolysaccharide-stimulated Raw264.7 cells. Additionally, MEL increased liver fatty acid ß-oxidation, leading to reduced lipid accumulation, and restored the oleate-loaded primary hepatocytes. Finally, MEL attenuated hepatic stellate cell (HSC) activation and fibrogenesis in the liver of MCD-fed mice and in LX-2 human HSCs. In conclusion, MEL acts on multiple cell types in the liver to mitigate NASH-associated phenotypes, supporting MEL or its analog as potential treatment for NASH.


Subject(s)
Melatonin , Non-alcoholic Fatty Liver Disease , Humans , Mice , Animals , Melatonin/pharmacology , Melatonin/therapeutic use , Melatonin/metabolism , Liver Cirrhosis/drug therapy , Liver Cirrhosis/etiology , Liver Cirrhosis/metabolism , Mice, Inbred C57BL , Liver/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Methionine/metabolism , Methionine/pharmacology , Diet , Disease Models, Animal , Choline/metabolism , Choline/pharmacology , Lipids
4.
Acta Biochim Biophys Sin (Shanghai) ; 55(2): 304-313, 2022 12 25.
Article in English | MEDLINE | ID: mdl-36514224

ABSTRACT

Neoadjuvant therapy (NAT) for advanced colorectal cancer (ACRC) is a kind of well-evidenced therapy, yet a portion of ACRC patients have poor therapeutic response. To date, no suitable biomarker used for assessing NAT efficacy has been reported. Here, we collect 72 colonoscopy biopsy tissue specimens from ACRC patients before undergoing NAT and investigate the relationship between HOXA13 expression and NAT efficacy. The results show that HOXA13 expression in pretreated tumor specimens is negatively associated with tumor regression ( P<0.001) and progression-free survival ( P<0.05) in ACRC patients who underwent NAT. Silencing of HOXA13 or its regulator HOTTIP significantly enhances the chemosensitivity of colorectal cancer (CRC) cells, leading to an increase in cell apoptosis and the DNA damage response (DDR) to chemotherapeutic drug treatment. In contrast, HOXA13 overexpression causes a significant increase in chemoresistance in CRC cells. In summary, we find that the HOTTIP/HOXA13 axis is involved in regulating chemotherapeutic sensitivity in CRC cells by modulating the DDR and that HOXA13 serves as a promising marker for NAT efficacy prediction in ACRC patients.


Subject(s)
Colorectal Neoplasms , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Gene Expression Regulation, Neoplastic , Neoadjuvant Therapy , Cell Line, Tumor , Cell Proliferation/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Biomarkers
5.
Acta Biochim Biophys Sin (Shanghai) ; 54(7): 940-951, 2022 05 25.
Article in English | MEDLINE | ID: mdl-35882623

ABSTRACT

More and more patients with advanced colorectal cancer (CRC) have benefited from surgical resection or ablation following neoadjuvant chemoradiotherapy (nCRT), but nCRT may be ineffective and have potential risks to some patients. Therefore, it is necessary to discover effective biomarkers for predicting the nCRT efficacy in CRC patients. Chromokinesin Kif4A plays a critical role in mitosis, DNA damage repair and tumorigenesis, but its relationship with nCRT efficacy in advanced CRC remains unclear. Here, we find that Kif4A expression in pretreated tumor tissue is positively correlated with poorer tumor regression after receiving nCRT ( P=0.005). Knockdown of endogenous Kif4A causes an increased sensitivity of CRC cells to chemotherapeutic drugs 5-fluorouracil (5-FU) and Cisplatin (DDP), while overexpression of Kif4A enhances resistance of CRC cells to the chemotherapeutic drugs. Furthermore, depending on its motor domain and tail domain, Kif4A regulates DNA damage response (DDR) induced by 5-FU or DDP treatment in CRC cells. In conclusion, we demonstrate that Kif4A may be a potential independent biomarker for predicting the nCRT efficacy in advanced CRC patients, and Kif4A regulates chemosensitivity of CRC cells through controlling DDR.


Subject(s)
Colorectal Neoplasms , Neoadjuvant Therapy , Cisplatin/pharmacology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , DNA Damage , Fluorouracil/pharmacology , Humans , Kinesins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...