Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.908
Filter
1.
Future Sci OA ; 10(1): FSO926, 2024.
Article in English | MEDLINE | ID: mdl-38827800

ABSTRACT

Aim: This population-based analysis aimed to explore the associations among marital status, prognosis and treatment of stage I non-small-cell lung cancer. Materials & methods: The propensity score matching (PSM), logistic regression and Cox proportional hazards model were used in this study. Results: A total of 13,937 patients were included. After PSM, 10579 patients were co-insured. The married were more likely to receive surgical treatment compared with the unmarried patients (OR: 1.841, p < 0.001), and patients who underwent surgery also tended to have better survival (HR: 0.293, p < 0.001). Conclusion: Compared with unmarried patients, a married group with stage I NSCLC had timely treatment and more satisfactory survival. This study highlights the importance of prompt help and care for unmarried patients.

2.
World J Clin Oncol ; 15(4): 554-565, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38689624

ABSTRACT

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is a prevalent malignancy with a high morbidity and mortality rate. TMEM100 has been shown to be suppressor gene in a variety of tumors, but there are no reports on the role of TMEM100 in esophageal cancer (EC). AIM: To investigate epigenetic regulation of TMEM100 expression in ESCC and the effect of TMEM100 on ESCC proliferation and invasion. METHODS: Firstly, we found the expression of TMEM100 in EC through The Cancer Genome Atlas database. The correlation between TMEM100 gene expression and the survival of patients with EC was further confirmed through Kaplan-Meier analysis. We then added the demethylating agent 5-AZA to ESCC cell lines to explore the regulation of TMEM100 expression by epigenetic modification. To observe the effect of TMEM100 expression on tumor proliferation and invasion by overexpressing TMEM100. Finally, we performed gene set enrichment analysis using the Kyoto Encyclopaedia of Genes and Genomes Orthology-Based Annotation System database to look for pathways that might be affected by TMEM100 and verified the effect of TMEM100 expression on the mitogen-activated protein kinases (MAPK) pathway. RESULTS: In the present study, by bioinformatic analysis we found that TMEM100 was lowly expressed in EC patients compared to normal subjects. Kaplan-meier survival analysis showed that low expression of TMEM100 was associated with poor prognosis in patients with EC. Then, we found that the demethylating agent 5-AZA resulted in increased expression of TMEM100 in ESCC cells [quantitative real-time PCR (qRT-PCR) and western blotting]. Subsequently, we confirmed that overexpression of TMEM100 leads to its increased expression in ESCC cells (qRT-PCR and western blotting). Overexpression of TMEM100 also inhibited proliferation, invasion and migration of ESCC cells (cell counting kit-8 and clone formation assays). Next, by enrichment analysis, we found that the gene set was significantly enriched in the MAPK signaling pathway. The involvement of TMEM100 in the regulation of MAPK signaling pathway in ESCC cell was subsequently verified by western blotting. CONCLUSION: TMEM100 is a suppressor gene in ESCC, and its low expression may lead to aberrant activation of the MAPK pathway. Promoter methylation may play a key role in regulating TMEM100 expression.

3.
World J Hepatol ; 16(4): 537-549, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38689749

ABSTRACT

The tumor microenvironment is a complex network of cells, extracellular matrix, and signaling molecules that plays a critical role in tumor progression and metastasis. Lymphatic and blood vessels are major routes for solid tumor metastasis and essential parts of tumor drainage conduits. However, recent studies have shown that lymphatic endothelial cells (LECs) and blood endothelial cells (BECs) also play multifaceted roles in the tumor microenvironment beyond their structural functions, particularly in hepatocellular carcinoma (HCC). This comprehensive review summarizes the diverse roles played by LECs and BECs in HCC, including their involvement in angiogenesis, immune modulation, lymphangiogenesis, and metastasis. By providing a detailed account of the complex interplay between LECs, BECs, and tumor cells, this review aims to shed light on future research directions regarding the immune regulatory function of LECs and potential therapeutic targets for HCC.

4.
Cancer Cell Int ; 24(1): 166, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734640

ABSTRACT

Triple-negative breast cancer (TNBC) is highly malignant and lacks effective biotherapeutic targets. The development of efficient anticancer drugs with low toxicity and few side effects is a hotspot in TNBC treatment research. Although erianin is known to have potent antitumor activity, its regulatory mechanism and target in TNBC have not been fully elucidated, hampering further drug development. This study showed that erianin can significantly inhibit TNBC cell proliferation and migration, promote cell apoptosis, and inhibit the growth of transplanted tumors in mice. Mechanistically, through network pharmacology analysis, molecular docking and cellular thermal shift assays, we preliminarily identified SRC as the cellular target of erianin. Erianin potently inhibited the expression of SRC, which mediated the anticancer effect of erianin in TNBC. Moreover, erianin can downregulate the expression of genes related to cholesterol synthesis and uptake by targeting SRC, interfering with cholesterol levels in TNBC, thereby inhibiting the progression of TNBC in vivo and in vitro. Taken together, our results suggest that erianin may inhibit the progression of TNBC by suppressing SRC-mediated cholesterol metabolism, and erianin has the great potential to be an effective treatment for TNBC patients.

5.
Front Med (Lausanne) ; 11: 1329538, 2024.
Article in English | MEDLINE | ID: mdl-38741763

ABSTRACT

Objective: To explore the effect of applying the online to offline teaching mode in the training of non-anesthesiology residents in department of anesthesiology. Trial design: The randomized controlled trial was performed on non-anesthesiology residents from Affiliated Jiangning Hospital of Nanjing Medical University. Methods: All selected residents were randomly divided into the traditional teaching group (Group T) and the online to offline teaching group (Group O) by the random number table method. Traditional teaching mode was used in Group T, while the online to offline teaching mode was used in Group O. The training period lasted for two months. At the end of the training, theoretical and clinical skills were assessed for all residents, and students' satisfaction scores on teaching were investigated from the aspects of teaching mode, stimulating learning interest, improving learning process and teaching satisfaction. The teaching efficiency was compared and analyzed in the two groups. Results: In total, 39 cases in Group O and 38 cases in Group T were included in the statistical analysis. Compared with Group T, theory test scores, clinical skills test scores, and overall scores improved significantly in Group O (82.2 ± 8.1 vs. 91.3 ± 7.6; 85.1 ± 4.7 vs. 93.3 ± 5.4 and 83.4 ± 6.4 vs. 92.1 ± 6.7, respectively, p < 0.01). Compared with Group T, scores on teaching mode, stimulating learning interest, improving learning process and teaching satisfaction were higher in Group O (81.1 ± 6.9 vs. 93.7 ± 5.2; 83.6 ± 5.8 vs. 91.6 ± 6.4; 82.4 ± 5.3 vs. 90.9 ± 4.8 and 82.1 ± 5.9 vs. 92.1 ± 5.5, respectively, p < 0.01). Conclusion: The online to offline teaching mode can improve the level of professional theory and clinical skill operation, and teaching satisfaction of the non-anesthesiology residents in department of anesthesiology, thus improving the teaching effectiveness.

6.
Nat Commun ; 15(1): 4051, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744839

ABSTRACT

Intestinal homeostasis is maintained by the response of gut-associated lymphoid tissue to bacteria transported across the follicle associated epithelium into the subepithelial dome. The initial response to antigens and how bacteria are handled is incompletely understood. By iterative application of spatial transcriptomics and multiplexed single-cell technologies, we identify that the double negative 2 subset of B cells, previously associated with autoimmune diseases, is present in the subepithelial dome in health. We show that in this location double negative 2 B cells interact with dendritic cells co-expressing the lupus autoantigens DNASE1L3 and C1q and microbicides. We observe that in humans, but not in mice, dendritic cells expressing DNASE1L3 are associated with sampled bacteria but not DNA derived from apoptotic cells. We propose that fundamental features of autoimmune diseases are microbiota-associated, interacting components of normal intestinal immunity.


Subject(s)
B-Lymphocytes , Dendritic Cells , Endodeoxyribonucleases , Gastrointestinal Microbiome , Animals , Humans , Mice , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Gastrointestinal Microbiome/immunology , Endodeoxyribonucleases/metabolism , Endodeoxyribonucleases/genetics , Dendritic Cells/immunology , Dendritic Cells/metabolism , Lymphoid Tissue/immunology , Lymphoid Tissue/metabolism , Female , Mice, Inbred C57BL , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Male
7.
Chemphyschem ; : e202400412, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38772911

ABSTRACT

The N1-Spermidine/spermine acetyltransferase (SSAT) serves as the rate-limiting enzyme in the polyamine metabolism pathway, specifically catalyzing the acetylation of spermidine, spermine, and other specific polyamines. The source of its enzymatic selectivity remains elusive. Here, we used quantum mechanics and molecular mechanics simulations combined with various technologies to explore the enzymatic mechanism of SSAT for endogenous polyamines from an atomic perspective. The static binding and chemical transformation were considered. The binding affinity was identified to be dependent on the protonated state of polyamine. The order of the binding affinity for Spm, Spd, and Put is consistent with the experimental results, which is also verified by the dynamic separation of polyamine and SSAT. Hydrogen bond interactions and salt bridges contribute most, and the common hot residues were identified. In addition, the transfer of acetyl and proton between polyamine and AcCoA was discovered to follow a concerted mechanism, and thermodynamic properties are responsible for the catalytic efficiency of SSAT. This work may be helpful for the development of polyamine derivatives based on catalysis to regulate polyamine metabolism.

8.
Behav Sci (Basel) ; 14(5)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38785843

ABSTRACT

In the aftermath of the COVID-19 pandemic, numerous studies have indicated that individuals are confronting a diminished sense of control. Compensatory control theory suggests that individuals strive to mitigate this loss by modifying their behavior. The present study aims to investigate the relationship between self-control and compensatory control change during the COVID-19 pandemic, as well as the mediating effects of openness and the personal need for structure. Participants completed an online questionnaire consisting of Personal Need for Structure Scale, Self-Control Scale, Openness Scale and Compensatory Control Change Scale. The results showed that the compensatory control change increased after the outbreak. Moreover, a serial mediation was found: openness and the personal need for structure partially mediated the relationship between self-control and compensatory control change. The results indicate that the COVID-19 pandemic has led to an increase in compensatory control behaviors, especially among those with pronounced self-control. High self-control individuals are found to exhibit greater openness, reducing their personal need for structure, in effect enhancing their compensatory control change. These findings highlight the critical role of self-control in sustaining a sense of control, which is vital for understanding psychological health management in the context of public health events.

9.
Heliyon ; 10(9): e30746, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38765128

ABSTRACT

Background: As the second most common gynecological cancer, cervical cancer (CC) seriously threatens women's health. The poor prognosis of CC is closely related to the post-infection microenvironment (PIM). This study investigated how lipid metabolism-related genes (LMRGs) affect CC PIM and their role in diagnosing CC. Methods: We analyzed lipid metabolism scores in the CC single-cell landscape by AUCell. The differentiation trajectory of epithelial cells to cancer cells was revealed using LMRGs and Monocle2. Consensus clustering was used to identify novel subgroups using the LMRGs. Multiple immune assessment methods were used to evaluate the immune landscape of the subgroups. Prognostic genes were determined by the LASSO and multivariate Cox regression analysis. Finally, we perform molecular docking of prognostic genes to explore potential therapeutic agents. Results: We revealed the differentiation trajectory of epithelial cells to cancer cells in CC by LMRGs. The higher LMRGs expression cluster had higher survival rates and immune infiltration expression. Functional enrichment showed that two clusters were mainly involved in immune response regulation. A novel LMR signature (LMR.sig) was constructed to predict clinical outcomes in CC. The expression of prognostic genes was correlated with the PIM immune landscape. Small molecular compounds with the best binding effect to prognostic genes were obtained by molecular docking, which may be used as new targeted therapeutic drugs. Conclusion: We found that the subtype with better prognosis could regulate the expression of some critical genes through more frequent lipid metabolic reprogramming, thus affecting the maturation and migration of dendritic cells (DCs) and the expression of M1 macrophages, reshaping the immunosuppressive environment of PIM in CC patients. LMRGs are closely related to the PIM immune landscape and can accurately predict tumor prognosis. These results further our understanding of the underlying mechanisms of LMRGs in CC.

10.
Heliyon ; 10(10): e31071, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38803891

ABSTRACT

Objective: The Obturator Functioning Scale (OFS) is a scale without formal measures of validity in any language. This study aimed to translate and adapt the OFS from English to Chinese and check its reliability and validity in Chinese-speaking patients with obturator prostheses after cancer-related maxillectomy. Methods: The 15-item Chinese preversion of the OFS was completed by 133 patients in three tertiary stomatological hospitals. Of these, 41 completed it again one week after the first measurement. The patients also completed the Chinese version of the University of Washington quality of life scale (UW-QOL, Version 4). Results: Item 12 ("upper lip feels numb") was deleted to achieve a better statistical fit. The 14-item Chinese version of the OFS (OFS-Ch) demonstrated high internal consistency (Cronbach's alpha = 0.908). The test-retest reliability coefficients for most items exceeded 0.90, indicating substantial reproducibility. Confirmatory factor analysis found that the scale consisted of three correlated factors: 1) eating (four items), 2) speech (five items), and 3) other problems (five items). This explained 70.2 % of the total variance using exploratory factor analysis. The scale was significantly convergent and discriminant and could validly discriminate between patients with Brown I and IId maxillary defects. Conclusions: Our results showed that the OFS-Ch scale is a valid tool for evaluating oral dysfunction and satisfaction with appearance for patients with the obturator prosthesis and identifying those at risk of poor obturator function in clinical settings.

11.
Int Immunopharmacol ; 136: 112340, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38820962

ABSTRACT

BACKGROUND: Adenosine deaminase acting on RNA 1 (ADAR1) is an RNA-editing enzyme that significantly impacts cancer progression and various biological processes. The expression of ADAR1 mRNA has been examined in multiple cancer types using The Cancer Genome Atlas (TCGA) dataset, revealing distinct patterns in kidney chromophobe (KICH), kidney renal clear cell carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP), and liver hepatocellular carcinoma (LIHC) compared to normal controls. However, the reasons for these differential expressions remain unclear. METHODS: In this study, we performed RT-PCR and western blotting (WB) to validate ADAR1 expression patterns in clinical tissue samples. Survival analysis and immune microenvironment analysis (including immune score and stromal score) were conducted using TCGA data to determine the specific cell types associated with ADAR1, as well as the key genes in those cell types. The relationship between ADAR1 and specific cell types' key genes was verified by immunohistochemistry (IHC), using clinical liver and kidney cancer samples. RESULTS: Our validation analysis revealed that ADAR1 expression was downregulated in KICH, KIRC, and KIRP, while upregulated in LIHC compared to normal tissues. Notably, a significant correlation was found between ADAR1 mRNA expression and patient prognosis, particularly in KIRC, KIRP, and LIHC. Interestingly, we observed a positive correlation between ADAR1 expression and stromal scores in KIRC, whereas a negative correlation was observed in LIHC. Cell type analysis highlighted distinct relationships between ADAR1 expression and the two stromal cell types, blood endothelial cells (BECs) and lymphatic endothelial cells (LECs), and further determined the signature gene claudin-5 (CLDN5), in KIRC and LIHC. Moreover, ADAR1 was inversely related with CLDN5 in KIRC (n = 26) and LIHC (n = 30) samples, verified via IHC. CONCLUSIONS: ADAR1 plays contrasting roles in LIHC and KIRC, associated with the enrichment of BECs and LECs within tumors. This study sheds light on the significant roles of stromal cells within the complex tumor microenvironment (TME) and provides new insights for future research in tumor immunotherapy and precision medicine.

12.
Int J Biol Macromol ; : 132747, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38821301

ABSTRACT

Degradable magnesium alloy stents are considered to be ideal candidates to replace the traditional non-degradable stents for the treatment of cardiovascular diseases. However, bare magnesium alloy stents usually degrade too fast and show poor hemocompatibility and cytocompatibility, which seriously affects their clinical use. In this study, surface modification based on the MgF2 layer, polydopamine (PDA) coating, fucoidan and CAG peptides was performed on the Mg-Zn-Y-Nd (ZE21B) magnesium alloy with the purpose of improving its corrosion resistance, hemocompatibility and cytocompatibility for vascular stent application. After modification, the ZE21B alloy showed better corrosion resistance. Moreover, the lower hemolysis rate, platelet adhesion and activation, and fibrinogen adsorption and denaturation proved the improved hemocompatibility of modified ZE21B alloy in in vitro blood experiments. Furthermore, the co-immobilization of fucoidan and CAG peptides significantly promoted the adhesion, proliferation, migration and NO release of endothelial cells (ECs) on the modified ZE21B alloy, and meanwhile the modification with fucoidan and CAG peptides inhibited the adhesion and proliferation of smooth muscle cells (SMCs) and suppressed the expression of proinflammatory factors in the macrophages (MAs). The surface modification obviously enhanced the corrosion resistance, hemocompatibility and cytocompatibility of ZE21B alloy, and provided an effective strategy for the development of degradable vascular stents.

13.
Biochem Biophys Res Commun ; 720: 150079, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38759300

ABSTRACT

Stroke and major depression disorder are common neurological diseases, and a large number of clinical studies have shown that there is a close relationship between the two diseases, but whether the two diseases are linked at the genetic level needs to be further explored. The purpose of this study was to explore the comorbidity mechanism of stroke and major depression by using bioinformatics technology and animal experiments. From the GEO database, we gathered transcriptome data of stroke and depression mice (GSE104036, GSE131712, GSE81672, and GSE146845) and identified comorbid gene set through edgR and WGCNA analyses. Further analysis revealed that these genes were enriched in pathways associated with cell death. Programmed cell death gene sets (PCDGs) are generated from genes related to apoptosis, necroptosis, pyroptosis and autophagy. The intersection of PCDGs and comorbid gene set resulted in two hub genes, Mlkl and Nlrp3. Single-cell sequencing analysis indicated that Mlkl and Nlrp3 are mainly influential on endothelial cells and microglia, suggesting that the impairment of these two cell types may be a factor in the relationship between stroke and major depression. This was experimentally confirmed by RT-PCR and immunofluorescence staining. Our research revealed that two specific genes, namely, Mlkl and Nlrp3, play crucial roles in the complex mechanism that links stroke and major depression. Additionally, we have predicted six possible therapeutic agents and the outcomes of docking simulations of target proteins and drug molecules.


Subject(s)
Depressive Disorder, Major , Stroke , Animals , Depressive Disorder, Major/genetics , Depressive Disorder, Major/metabolism , Stroke/genetics , Stroke/metabolism , Mice , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Male , Transcriptome , Computational Biology/methods , Apoptosis/genetics
14.
Medicine (Baltimore) ; 103(20): e38189, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758839

ABSTRACT

To investigate the mechanism by which high-dose vitamin C (HVC) promotes ferroptosis in tumor cells via network pharmacology, vitamin C-related and ferroptosis-related targets were obtained from the PharmMapper and GeneCards databases, respectively, and their common targets were compared using the Venn diagram. Common targets were imported into the STRING database for protein-protein interaction analysis, and core targets were defined. Core targets were enriched for Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways using the R language packages. A map of the core target-based interaction network and a map of the mechanism by which HVC regulates ferroptosis were constructed. A total of 238 vitamin C-related and 721 ferroptosis-related targets were identified, of which 21 targets were common to both. Furthermore, ALDOA, AHCY, LDHB, HSPA8, LGALS3, and GSTP1 were identified as core targets. GO enrichment analysis suggested that the main biological processes included the extrinsic apoptotic signaling pathway and pyruvate metabolic process. KEGG enrichment analysis suggested that HVC regulates ferroptosis mainly through the amino acid and carbohydrate metabolic pathways. The targets were validated by molecular docking. In conclusion, HVC may promote ferroptosis in tumor cells by regulating metabolic pathways, and there is a synergistic effect between HVC and type I ferroptosis inducers. Glycolysis-dependent tumors may be beneficial for HVC therapy. Our study provides a reference for further clinical studies on HVC antitumor therapy.


Subject(s)
Ascorbic Acid , Ferroptosis , Molecular Docking Simulation , Network Pharmacology , Ferroptosis/drug effects , Humans , Ascorbic Acid/pharmacology , Ascorbic Acid/administration & dosage , Network Pharmacology/methods , Neoplasms/drug therapy , Neoplasms/pathology , Protein Interaction Maps/drug effects
15.
Int J Biol Sci ; 20(7): 2640-2657, 2024.
Article in English | MEDLINE | ID: mdl-38725843

ABSTRACT

Esophageal carcinoma is amongst the prevalent malignancies worldwide, characterized by unclear molecular classifications and varying clinical outcomes. The PI3K/AKT/mTOR signaling, one of the frequently perturbed dysregulated pathways in human malignancies, has instigated the development of various inhibitory agents targeting this pathway, but many ESCC patients exhibit intrinsic or adaptive resistance to these inhibitors. Here, we aim to explore the reasons for the insensitivity of ESCC patients to mTOR inhibitors. We assessed the sensitivity to rapamycin in various ESCC cell lines by determining their respective IC50 values and found that cells with a low level of HMGA1 were more tolerant to rapamycin. Subsequent experiments have supported this finding. Through a transcriptome sequencing, we identified a crucial downstream effector of HMGA1, FKBP12, and found that FKBP12 was necessary for HMGA1-induced cell sensitivity to rapamycin. HMGA1 interacted with ETS1, and facilitated the transcription of FKBP12. Finally, we validated this regulatory axis in in vivo experiments, where HMGA1 deficiency in transplanted tumors rendered them resistance to rapamycin. Therefore, we speculate that mTOR inhibitor therapy for individuals exhibiting a reduced level of HMGA1 or FKBP12 may not work. Conversely, individuals exhibiting an elevated level of HMGA1 or FKBP12 are more suitable candidates for mTOR inhibitor treatment.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , HMGA1a Protein , MTOR Inhibitors , Proto-Oncogene Protein c-ets-1 , Humans , Cell Line, Tumor , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/genetics , Proto-Oncogene Protein c-ets-1/metabolism , Proto-Oncogene Protein c-ets-1/genetics , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/pathology , HMGA1a Protein/metabolism , HMGA1a Protein/genetics , MTOR Inhibitors/pharmacology , MTOR Inhibitors/therapeutic use , Tacrolimus Binding Protein 1A/metabolism , Tacrolimus Binding Protein 1A/genetics , Animals , Sirolimus/pharmacology , Sirolimus/therapeutic use , Signal Transduction/drug effects , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/drug therapy , TOR Serine-Threonine Kinases/metabolism , Mice , Mice, Nude
16.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2648-2653, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812165

ABSTRACT

Chronic prostatitis/chronic pelvic pain syndrome(CP/CPPS) is a common urological disease with complex etiology. The treatment effect of western medicine is not satisfactory, and the course of the disease is protracted, which brings great trouble to patients. Traditional Chinese medicine(TCM) has a variety of treatment methods based on syndrome differentiation and treatment, including internal treatment with TCM, acupuncture and massage, and other external treatment methods for comprehensive treatment, with significant effect. This study summarized the etiology and pathogenesis of CP/CPPS and found that western medicine cannot fully explain the etiology and pathogenesis of CP/CPPS. It was believed that CP/CPPS was mainly related to many factors such as special pathogen infection, voiding dysfunction, mental and psychological abnormalities, neuroendocrine abnormalities, immune abnormalities, excessive oxidative stress, pelvic diseases, and heredity. TCM believed that CP/CPPS was caused by damp heat, blood stasis, Qi stagnation, and poisoning and was closely related to the organs of the liver, spleen, kidney, lung, stomach, bladder, and meridians of Chong and Ren channels and three yin channels of the foot. In the treatment of TCM, multiple comprehensive treatment plans are currently used, including internal treatment with TCM(decoction, proprietary Chinese medicine, and unique therapies of famous doctors), acupuncture and massage treatment, and other external treatment methods(rectal administration, topical application of TCM, and ear acupoint pressure). Comprehensive regulation has significant clinical efficacy and prominent characteristics of TCM, and it is worth clinical promotion. This study aims to provide a reference for clinical prevention and treatment of CP/CPPS and points out potential directions for future research in this field.


Subject(s)
Drugs, Chinese Herbal , Medicine, Chinese Traditional , Pelvic Pain , Prostatitis , Humans , Prostatitis/therapy , Prostatitis/drug therapy , Pelvic Pain/therapy , Pelvic Pain/drug therapy , Male , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/administration & dosage , Chronic Disease , Acupuncture Therapy
19.
Mar Environ Res ; 198: 106482, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38626628

ABSTRACT

Neuston, situated at the air-sea interface, stands as a crucial frontier in the realm of the global warming. Despite its unique habitat, there remains a need to substantiate the composition, diel dynamic and biotic-abiotic interaction of neustonic zooplankton in the tropical seas. In this study, we present rare observational data on neustonic zooplankton (0-20 cm) in the oligotrophic tropical South China Sea (SCS) during the summer of 2022. A total of eighteen samples were collected and analyzed, revealing the presence of fourteen taxa from eight phyla. The most prevalent group was Cypridina, accounting for 33.7% of the total abundance, followed by copepods (29.0%) and jellyfish (10.9%). Within copepods, the genus Pontella exhibited the highest relative abundance (38.0%). Additionally, each neuston taxon displayed unique diel distribution patterns. Cypridina was the most abundant taxon during the night (40.4%), while it shifted to copepod dominance during the day (50.4%). Among copepods, genus Pontella and larvae were dominant groups at night (44.7%) and during the day (30.0%), respectively. Moreover, a multivariate biota-environment analysis demonstrated that temperature, pH, dissolved oxygen and Si(OH)4 significantly impacted neuston composition. Notably, both jellyfish and sea snails showed a significant positive correlation with temperature, suggesting their potential dominance in the neuston community in response to future global warming in the oligotrophic tropical seas. This study lays a robust foundation for recognizing the neuston community in the oceanic SCS, and helps evaluate the long-term risks to neuston habitats under climate changes.

20.
Med Educ Online ; 29(1): 2336332, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38560892

ABSTRACT

BACKGROUND: The scholarship of teaching and learning (SoTL) is a field of academic research that focuses on improving learning through reflective and informed teaching. Currently, most SoTL-related work is faculty-driven; however, student involvement in SoTL has been shown to benefit both learners and educators. Our study aims to develop a framework for increasing medical students' interest, confidence, and engagement in SoTL. METHODS: A student-led SoTL interest group was developed and a year-round program of SoTL was designed and delivered by student leaders of the group under the guidance of a faculty advisor. Individual post-session surveys were administered to evaluate participants' perceptions of each session. Pre- and post-program surveys were administered to evaluate the program impact. RESULTS: The year-round SoTL program consistently attracted the participation of medical students and faculty. Survey responses indicated strong medical student interest in the program and positive impact of the program. Increased interest and confidence in medical education research were reported by the student participants. The program design provided opportunities for student participants to network and receive ongoing feedback about medical education research they were interested or involved in. CONCLUSION: Our study provides insights for developing a framework that other institutions can reference and build upon to educate and engage students in SoTL.


Subject(s)
Students, Medical , Humans , Fellowships and Scholarships , Learning , Faculty , Feedback , Teaching , Curriculum
SELECTION OF CITATIONS
SEARCH DETAIL
...