Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38862405

ABSTRACT

Controlling the crystal facets of semiconductor nanocrystals (NCs) has been proven as an effective approach to tune their physicochemical properties. However, the study on facet-engineering of metastable zinc blende CdS (zb-CdS) and its heterostructures is still not fully explored. In this study, the zb-CdS and Au@zb-CdS core-shell NCs with tunable terminating facets are controllably synthesized, and their photocatalytic performance for water splitting are evaluated. It is found that the {111} facets of the zb-CdS NCs display higher intrinsic activity than the {100} counterparts, which originates from these surfaces being much more efficient, facilitating electron transition to enhance the adsorption ability and the dissociation of the adsorbed water, as revealed by theoretical calculations. Moreover, the Au@zb-CdS core-shell NCs exhibit better photocatalytic performance than the zb-CdS NCs terminated with the same facets under visible light irradiation (≥400 nm), which is mainly ascribed to the accelerated electron separation at the interface, as demonstrated by femtosecond transient absorption (fs-TA) spectroscopy. Importantly, the quantum yield of plasmon-induced hot electron transfer quantified by fs-TA in the Au@zb-CdS core-shell octahedrons can be reached as high as 1.2% under 615 nm excitation, which is higher than that of the Au@zb-CdS core-shell cubes. This work unravels the face-dependent photocatalytic performance of the metastable semiconductor NCs via a combination of experiments and theoretical calculations, providing the understanding of the underlying mechanism of these photocatalysts.

2.
Adv Mater ; 35(47): e2304624, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37707242

ABSTRACT

Understanding the emergent electronic structure in twisted atomically thin layers has led to the exciting field of twistronics. However, practical applications of such systems are challenging since the specific angular correlations between the layers must be precisely controlled and the layers have to be single crystalline with uniform atomic ordering. Here, an alternative, simple, and scalable approach is suggested, where nanocrystallinetwo-dimensional (2D) film on 3D substrates yields twisted-interface-dependent properties. Ultrawide-bandgap hexagonal boron nitride (h-BN) thin films are directly grown on high in-plane lattice mismatched wide-bandgap silicon carbide (4H-SiC) substrates to explore the twist-dependent structure-property correlations. Concurrently, nanocrystalline h-BN thin film shows strong non-linear second-harmonic generation and ultra-low cross-plane thermal conductivity at room temperature, which are attributed to the twisted domain edges between van der Waals stacked nanocrystals with random in-plane orientations. First-principles calculations based on time-dependent density functional theory manifest strong even-order optical nonlinearity in twisted h-BN layers. This work unveils that directly deposited 2D nanocrystalline thin film on 3D substrates could provide easily accessible twist-interfaces, therefore enabling a simple and scalable approach to utilize the 2D-twistronics integrated in 3D material devices for next-generation nanotechnology.

3.
Nanoscale Horiz ; 8(5): 641-651, 2023 May 02.
Article in English | MEDLINE | ID: mdl-36880586

ABSTRACT

The room temperature growth of two-dimensional van der Waals (2D-vdW) materials is indispensable for state-of-the-art nanotechnology. Low temperature growth supersedes the requirement of elevated growth temperatures accompanied with high thermal budgets. Moreover, for electronic applications, low or room temperature growth reduces the possibility of intrinsic film-substrate interfacial thermal diffusion related deterioration of the functional properties and the consequent deterioration of the device performance. Here, we demonstrated the growth of ultrawide-bandgap boron nitride (BN) at room temperature by using the pulsed laser deposition (PLD) process, which exhibited various functional properties for potential applications. Comprehensive chemical, spectroscopic and microscopic characterizations confirmed the growth of ordered nanosheet-like hexagonal BN (h-BN). Functionally, the nanosheets show hydrophobicity, high lubricity (low coefficient of friction), and a low refractive index within the visible to near-infrared wavelength range, and room temperature single-photon quantum emission. Our work unveils an important step that brings a plethora of potential applications for these room temperature grown h-BN nanosheets as the synthesis can be feasible on any given substrate, thus creating a scenario for "h-BN on demand" under a frugal thermal budget.

4.
Nat Commun ; 13(1): 5027, 2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36028480

ABSTRACT

High-surface-area α-Al2O3 nanoparticles are used in high-strength ceramics and stable catalyst supports. The production of α-Al2O3 by phase transformation from γ-Al2O3 is hampered by a high activation energy barrier, which usually requires extended high-temperature annealing (~1500 K, > 10 h) and suffers from aggregation. Here, we report the synthesis of dehydrated α-Al2O3 nanoparticles (phase purity ~100%, particle size ~23 nm, surface area ~65 m2 g-1) by a pulsed direct current Joule heating of γ-Al2O3. The phase transformation is completed at a reduced bulk temperature and duration (~573 K, < 1 s) via an intermediate δ'-Al2O3 phase. Numerical simulations reveal the resistive hotspot-induced local heating in the pulsed current process enables the rapid transformation. Theoretical calculations show the topotactic transition (from γ- to δ'- to α-Al2O3) is driven by their surface energy differences. The α-Al2O3 nanoparticles are sintered to nanograined ceramics with hardness superior to commercial alumina and approaching that of sapphire.

5.
Opt Express ; 27(12): 17262-17273, 2019 Jun 10.
Article in English | MEDLINE | ID: mdl-31252939

ABSTRACT

In this work, we study the crystalline defect induced optical scattering loss inside photonic waveguide. Volume current method is implemented with a close form of dyadic Green's function derived. More specifically, threading dislocation induced scattering loss inside AlN waveguides in UV-visible spectrum wavelengths are studied since this material is intrinsically accompanied with high densities of dislocations (typically on order of 108-1010cm-2). The results from this study reveal that threading dislocations contribute significant amount of scattering loss when material is not MOCVD grown. Additionally, the scattering loss is strongly dependent on polarization and waveguide geometries: TM modes exhibit higher scattering loss compared with TE modes, and the multimode large core waveguides are more susceptible to threading dislocations compared with single mode waveguides and high-aspect-ratio waveguides. Conclusions from this work can be supported by several recently published investigations on III-N based photonic devices. The model derived from this work can also be easily altered to fit other material systems with other types of crystalline defects.

6.
Nanotechnology ; 30(21): 215201, 2019 May 24.
Article in English | MEDLINE | ID: mdl-30721888

ABSTRACT

We report the demonstration of a steep-slope field-effect transistor with AlGaN/GaN MIS-HEMTs employing SiO2-based threshold switching devices in series with the source. The SiO2-based threshold switching devices exhibited steep slope when changing resistance states. The integrated steep-slope transistor showed a low subthreshold swing of sub-5 mV/dec with a transition range of over 105 in the transfer characteristics in both sweep directions at room temperature, as well as the low leakage current (10-5 µA µm-1) and a high I ON/I OFF ratio (>107). Moreover, with the SiO2-based threshold switching devices we also observed a positive shift of threshold voltages of the integrated device. Results from more than 50 transfer characteristics measurements also indicate the good repeatability and practicability of such a steep-switching device, where the average steep slopes are below 10 mV/decade. This steep-slope transistor with oxide-based threshold switching devices can be further extended to various transistor platforms like Si and III-V and are of potential interest for the development of power switching and high frequency devices.

7.
Opt Express ; 26(4): 3938-3946, 2018 Feb 19.
Article in English | MEDLINE | ID: mdl-29475251

ABSTRACT

We report, for the first time, the characterizations on optical nonlinearities of beta-phase gallium oxide (ß-Ga2O3), where both (010) ß-Ga2O3 and (2¯01) ß-Ga2O3 were examined for two-photon absorption coefficient, Kerr nonlinear refractive index, and their polarization dependence. The wavelength dependence of two-photo absorption coefficient and Kerr nonlinear refractive index were also estimated by a widely used analytical model. ß-Ga2O3 exhibits a two photon absorption (TPA) coefficient of 1.2 cm/GW for (010) ß-Ga2O3 and 0.6 cm/GW for (2¯01) ß-Ga2O3. The Kerr nonlinear refractive index is -2.1 × 10-15 cm2/W for (010) ß-Ga2O3 and -2.9 × 10-15 cm2/W for (2¯01) ß-Ga2O3. In addition, ß-Ga2O3 shows stronger in-plane nonlinear optical anisotropy on (2¯01) plane than on (010) plane. Compared with GaN, TPA coefficient of ß-Ga2O3 is 20 times smaller, and the Kerr nonlinear refractive index of ß-Ga2O3 is also found to be 4-5 times smaller. These results indicate that ß-Ga2O3 have the potential for ultra-low loss waveguides and ultra-stable resonators and integrated photonics, especially in UV and visible wavelength spectral range.

8.
Opt Express ; 25(25): 31758-31773, 2017 Dec 11.
Article in English | MEDLINE | ID: mdl-29245846

ABSTRACT

We perform comprehensive studies on the fundamental loss mechanisms in III-nitride waveguides in the visible spectral region. Theoretical analysis shows that free carrier loss dominates for GaN under low photon power injection. When optical power increases, the two photon absorption loss becomes important and eventually dominates when photon energy above half-bandgap of GaN. When the dimensions of the waveguides reduce, the sidewall scattering loss will start to dominate. To verify the theoretical results, a high performance GaN-on-sapphire waveguide was fabricated and characterized. Experimental results are consistent with the theoretical findings, showing that under high power injection the optical loss changed significantly for GaN waveguides. A low optical loss ~2 dB/cm was achieved on the GaN waveguide, which is the lowest value ever reported for the visible spectral range. The results and fabrication processes developed in this work pave the way for the development of III-nitride integrated photonics in the visible and potentially ultraviolet spectral range for nonlinear optics and quantum photonics applications.

9.
Opt Express ; 25(20): 24138-24147, 2017 Oct 02.
Article in English | MEDLINE | ID: mdl-29041359

ABSTRACT

This paper provides a solution for a self-powered light direction detection with digitized output. Light direction sensors, energy harvesting photodiodes, real-time adaptive tracking digital output unit and other necessary circuits are integrated on a single chip based on a standard 0.18 µm CMOS process. Light direction sensors proposed have an accuracy of 1.8 degree over a 120 degree range. In order to improve the accuracy, a compensation circuit is presented for photodiodes' forward currents. The actual measurement precision of output is approximately 7 ENOB. Besides that, an adaptive under voltage protection circuit is designed for variable supply power which may undulate with temperature and process.

10.
Opt Express ; 25(15): 17971-17981, 2017 Jul 24.
Article in English | MEDLINE | ID: mdl-28789285

ABSTRACT

Visible light communication (VLC) holds the promise of a high-speed wireless network for indoor applications and competes with 5G radio frequency (RF) system. Although the breakthrough of gallium nitride (GaN) based micro-light-emitting-diodes (micro-LEDs) increases the -3dB modulation bandwidth exceptionally from tens of MHz to hundreds of MHz, the light collected onto a fast photo receiver drops dramatically, which determines the signal to noise ratio (SNR) of VLC. To fully implement the practical high data-rate VLC link enabled by a GaN-based micro-LED, it requires focusing optics and a tracking system. In this paper, we demonstrate an active on-chip tracking system for VLC using a GaN-based micro-LED and none-return-to-zero on-off keying (NRZ-OOK). Using this novel technique, the field of view (FOV) was enlarged to 120° and data rates up to 600 Mbps at a bit error rate (BER) of 2.1×10-4 were achieved without manual focusing. This paper demonstrates the establishment of a VLC physical link that shows enhanced communication quality by orders of magnitude, making it optimized for practical communication applications.

11.
Opt Express ; 24(10): A856-67, 2016 May 16.
Article in English | MEDLINE | ID: mdl-27409958

ABSTRACT

We implement finite-difference time-domain (FDTD) method to simulate the optical properties of highly polarized InGaN light emitting diodes (LEDs) coupled with metallic grating structure. The Purcell factor (Fp), light extraction efficiency (LEE), internal quantum efficiency (IQE), external quantum efficiency (EQE), and modulation frequency are calculated for different polarized emissions. Our results show that light polarization has a strong impact on Fp and LEE of LEDs due to their coupling effects with the surface plasmons (SPs) generated by metallic grating. Fp as high as 34 and modulation frequency up to 5.4 GHz are obtained for a simulated LED structure. Furthermore, LEE, IQE and EQE can also be enhanced by tuning the coupling between polarized emission and SPs. These results can serve as guidelines for the design and fabrication of high efficiency and high speed LEDs for the applications of solid-state lighting and visible-light communication.

12.
Opt Express ; 21 Suppl 1: A53-9, 2013 Jan 14.
Article in English | MEDLINE | ID: mdl-23389275

ABSTRACT

Linear polarized electroluminescence was investigated for semipolar (3031) and (3031) InGaN light-emitting diodes (LEDs) with various indium compositions. A high degree of optical polarization was observed for devices on both planes, ranging from 0.37 at 438 nm to 0.79 at 519 nm. The extracted valence band energy separation was consistent with the optical polarization ratios. The effect of anisotropic strain on the valance band structure was studied using k?p method for the above two planes. The theoretical calculations are consistent with the experimental results.


Subject(s)
Gallium/chemistry , Light , Lighting/instrumentation , Semiconductors , Equipment Design , Indium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...