Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Hum Brain Mapp ; 45(8): e26718, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38825985

ABSTRACT

The early stages of human development are increasingly acknowledged as pivotal in laying the groundwork for subsequent behavioral and cognitive development. Spatiotemporal (4D) brain functional atlases are important in elucidating the development of human brain functions. However, the scarcity of such atlases for early life stages stems from two primary challenges: (1) the significant noise in functional magnetic resonance imaging (fMRI) that complicates the generation of high-quality atlases for each age group, and (2) the rapid and complex changes in the early human brain that hinder the maintenance of temporal consistency in 4D atlases. This study tackles these challenges by integrating low-rank tensor learning with spectral embedding, thereby proposing a novel, data-driven 4D functional atlas generation framework based on spectral functional network learning (SFNL). This method utilizes low-rank tensor learning to capture common functional connectivity (FC) patterns across different ages, thus optimizing FCs for each age group to improve the temporal consistency of functional networks. Incorporating spectral embedding aids in mitigating potential noise in FC networks derived from fMRI data by reconstructing networks in the spectral space. Utilizing SFNL-generated functional networks enables the creation of consistent and highly qualified spatiotemporal functional atlases. The framework was applied to the developing Human Connectome Project (dHCP) dataset, generating the first neonatal 4D functional atlases with fine-grained temporal and spatial resolutions. Experimental evaluations focusing on functional homogeneity, reliability, and temporal consistency demonstrated the superiority of our framework compared to existing methods for constructing 4D atlases. Additionally, network analysis experiments, including individual identification, functional systems development, and local efficiency assessments, further corroborate the efficacy and robustness of the generated atlases. The 4D atlases and related codes will be made publicly accessible (https://github.com/zhaoyunxi/neonate-atlases).


Subject(s)
Atlases as Topic , Connectome , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Infant, Newborn , Connectome/methods , Male , Female , Brain/diagnostic imaging , Brain/physiology , Brain/growth & development , Infant , Image Processing, Computer-Assisted/methods , Machine Learning , Nerve Net/diagnostic imaging , Nerve Net/physiology , Nerve Net/growth & development
2.
Article in English | MEDLINE | ID: mdl-38935468

ABSTRACT

Predicting individual behavior is a crucial area of research in neuroscience. Graph Neural Networks (GNNs), as powerful tools for extracting graph-structured features, are increasingly being utilized in various functional connectivity (FC) based behavioral prediction tasks. However, current predictive models primarily focus on enhancing GNNs' ability to extract features from FC networks while neglecting the importance of upstream individual network construction quality. This oversight results in constructed functional networks that fail to adequately represent individual behavioral capacity, thereby affecting the subsequent prediction accuracy. To address this issue, we proposed a new GNN-based behavioral prediction framework, named Dual Multi-Hop Graph Convolutional Network (D-MHGCN). Through the joint training of two GCNs, this framework integrates individual functional network construction and behavioral prediction into a unified optimization model. It allows the model to dynamically adjust the individual functional cortical parcellation according to the downstream tasks, thus creating task-aware, individual-specific FCNs that largely enhance its ability to predict behavior scores. Additionally, we employed multi-hop graph convolution layers instead of traditional single-hop methods in GCN to capture complex hierarchical connectivity patterns in brain networks. Our experimental evaluations, conducted on the large, public Human Connectome Project dataset, demonstrate that our proposed method outperforms existing methods in various behavioral prediction tasks. Moreover, it produces more functionally homogeneous cortical parcellation, showcasing its practical utility and effectiveness. Our work not only enhances the accuracy of individual behavioral prediction but also provides deeper insights into the neural mechanisms underlying individual differences in behavior.

3.
Eur J Med Chem ; 272: 116487, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38759452

ABSTRACT

Acute lung injury (ALI) and inflammatory bowel disease (IBD) are common inflammatory illnesses that seriously affect people's health. Herein, a series of 4-hydroxylcoumarin (4-HC) derivatives were designed and synthesized. The inhibitory effects of these compounds on LPS-induced interleukin-6 (IL-6) release from J774A.1 cells were then screened via ELISA assay, compound B8 showed 3 times more active than the lead compound 4-HC. The most active compound B8 had the IC50 values of 4.57 µM and 6.51 µM for IL-6 release on mouse cells J774A.1 and human cells THP-1, respectively. Furthermore, we also found that B8 could act on the MAPK pathway. Based on the target prediction results of computer virtual docking, kinase inhibitory assay was carried out, and it revealed that targeting IRAK1 was a key mechanism for B8 to exert anti-inflammatory activity. Moreover, B8 exerted a good therapeutic effect on the dextran sulfate sodium (DSS)-induced colitis model and liposaccharide (LPS)-induced ALI mouse models. The acute toxicity experiments indicated that high-dose B8 caused no adverse reactions in mice, confirming its safety in vivo. Additionally, the preliminary pharmacokinetic (PK) parameters of B8 in SD rats were also examined, revealing a bioavailability (F) of 28.72 %. In conclusion, B8 is a potential candidate of drug for the treatment of ALI and colitis.


Subject(s)
4-Hydroxycoumarins , Acute Lung Injury , Colitis , Drug Design , Acute Lung Injury/drug therapy , Acute Lung Injury/chemically induced , Animals , Colitis/drug therapy , Colitis/chemically induced , Mice , Humans , Structure-Activity Relationship , 4-Hydroxycoumarins/pharmacology , 4-Hydroxycoumarins/chemistry , 4-Hydroxycoumarins/chemical synthesis , Molecular Structure , Dextran Sulfate , Male , Dose-Response Relationship, Drug , Rats , Lipopolysaccharides/pharmacology , Lipopolysaccharides/antagonists & inhibitors , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Interleukin-6/metabolism , Interleukin-6/antagonists & inhibitors , Interleukin-1 Receptor-Associated Kinases/antagonists & inhibitors , Interleukin-1 Receptor-Associated Kinases/metabolism , Molecular Docking Simulation , Mice, Inbred C57BL , Cell Line
4.
Environ Geochem Health ; 46(4): 116, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38478189

ABSTRACT

Ecological pollution caused by heavy metals released from sediments is a worldwide concern. However, the effect of changes in sediment speciation on their release of heavy metals has not been adequately reported. In this study, the research focused on Pb and Cr in the ice period of Wuliangsuhai. This study analyzed changes in the sediment speciation of Pb and Cr before and after a release experiment using four risk assessment methods while varying the temperature, pH, and salinity of the water column. The results indicated that the total concentration of Pb ranged from 11.17 to 24.25 mg/kg, while for Cr it ranged from 42.26 to 69.68 mg/kg. Both elements exhibited mild contamination. The release of Pb and Cr from sediments increases with increasing water temperature, mainly due to the conversion of the residual fraction of Pb to the Fe-Mn oxide fraction and Cr converting more residual fraction to the organic matter and sulfide fraction. The release of sediment Pb and Cr decreased with increasing pH, with Pb converting more acid extractable fraction to the residual fraction and Cr converting more organic matter and sulfide fraction to the residual fraction. In contrast, the release of Pb and Cr increased and then decreased with increasing salinity. For Pb, the acid extractable fraction was more susceptible to conversion to the residual fraction by environmental influences, whereas for Cr, the organic matter and sulfide fraction were susceptible to conversion to the residual fraction.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Lakes , Ice , Lead , Geologic Sediments , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Metals, Heavy/analysis , Water , Risk Assessment , Sulfides , China
5.
Natl Sci Rev ; 11(2): nwad269, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38213516

ABSTRACT

Hydrogen therapy shows great promise as a versatile treatment method for diseases associated with the overexpression of reactive oxygen and nitrogen species (RONS). However, developing an advanced hydrogen therapy platform that integrates controllable hydrogen release, efficient RONS elimination, and biodegradability remains a giant technical challenge. In this study, we demonstrate for the first time that the tungsten bronze phase H0.53WO3 (HWO) is an exceptionally ideal hydrogen carrier, with salient features including temperature-dependent highly-reductive atomic hydrogen release and broad-spectrum RONS scavenging capability distinct from that of molecular hydrogen. Moreover, its unique pH-responsive biodegradability ensures post-therapeutic clearance at pathological sites. Treatment with HWO of diabetic wounds in an animal model indicates that the solid-state atomic H promotes vascular formation by activating M2-type macrophage polarization and anti-inflammatory cytokine production, resulting in acceleration of chronic wound healing. Our findings significantly expand the basic categories of hydrogen therapeutic materials and pave the way for investigating more physical forms of hydrogen species as efficient RONS scavengers for clinical disease treatment.

6.
J Am Heart Assoc ; 12(10): e028866, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37158154

ABSTRACT

Background Myocardial infarction (MI) is a cardiovascular disease with high morbidity and mortality. PI16 (peptidase inhibitor 16), as a secreted protein, is highly expressed in heart diseases such as heart failure. However, the functional role of PI16 in MI is unknown. This study aimed to investigate the role of PI16 after MI and its underlying mechanisms. Methods and Results PI16 levels after MI were measured by enzyme-linked immunosorbent assay and immunofluorescence staining, which showed that PI16 was upregulated in the plasma of patients with acute MI and in the infarct zone of murine hearts. PI16 gain- and loss-of-function experiments were used to investigate the potential role of PI16 after MI. In vitro, PI16 overexpression inhibited oxygen-glucose deprivation-induced apoptosis in neonatal rat cardiomyocytes, whereas knockdown of PI16 exacerbated neonatal rat cardiomyocyte apoptosis. In vivo, left anterior descending coronary artery ligation was performed on PI16 transgenic mice, PI16 knockout mice, and their littermates. PI16 transgenic mice showed decreased cardiomyocyte apoptosis at 24 hours after MI and improved left ventricular remodeling at 28 days after MI. Conversely, PI16 knockout mice showed aggravated infract size and remodeling. Mechanistically, PI16 downregulated Wnt3a (wingless-type MMTV integration site family, member 3a)/ß-catenin pathways, and the antiapoptotic role of PI16 was reversed by recombinant Wnt3a in oxygen-glucose deprivation-induced neonatal rat cardiomyocytes. PI16 also inhibited HDAC1 (class I histone deacetylase) expression, and overexpression HDAC1 abolished the inhibition of apoptosis and Wnt signaling of PI16. Conclusions In summary, PI16 protects against cardiomyocyte apoptosis and left ventricular remodeling after MI through the HDAC1-Wnt3a-ß-catenin axis.


Subject(s)
Myocardial Infarction , Ventricular Remodeling , Mice , Rats , Animals , Ventricular Remodeling/physiology , beta Catenin/metabolism , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Mice, Transgenic , Mice, Knockout , Apoptosis/physiology , Protease Inhibitors , Disease Models, Animal , Histone Deacetylase 1/genetics
7.
Cell Stress Chaperones ; 28(4): 375-384, 2023 07.
Article in English | MEDLINE | ID: mdl-37140849

ABSTRACT

Reactive oxygen species (ROS) play an essential role in macrophage polarization. However, the adverse effects of ROS reduction by influencing epigenetics are often ignored. In this study, lipopolysaccharide (LPS) was used to stimulate macrophages to increase the ROS in cells, and N-acetylcysteine (NAC) was used to reduce ROS. Inflammatory factors such as interleukin 1ß (IL-1ß), interleukin 6 (IL-6), and tumor necrosis factor α (TNF-α) were used to evaluate the M1 polarization level of macrophages. Chip was used to detect the tri-methylation at lysine 27 of histone H3 (H3K27me3) level at the promoter site. It was found that the decrease of ROS in macrophages would also cause the increase of the H3K27me3 demethylase KDM6A and lead to the reduction of H3K27me3 in the NOX2 promoter, which would increase the transcription level of NOX2 and the production of ROS and ultimately promote the production of inflammatory factors. Knockout of KDM6A can reduce the transcription of NOX2 and the production of ROS of macrophages, thus preventing the M1 polarization of macrophages. The elimination of ROS in macrophages will affect macrophages by increasing KDM6A and making them produce more ROS, thus inducing oxidative stress. In comparison, direct inhibition of KDM6A can reduce ROS production and inhibit macrophage M1 polarization more effectively.


Subject(s)
Histones , Macrophages , Reactive Oxygen Species/metabolism , Oxidative Stress , Interleukin-6/metabolism , Histone Demethylases/pharmacology
8.
Phytother Res ; 37(8): 3309-3322, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36932920

ABSTRACT

Ginkgolide A (GA), a main terpenoid extracted from Ginkgo biloba, possesses biological activities such as anti-inflammatory, anti-tumor, and liver protection. However, the inhibitory effects of GA on septic cardiomyopathy remain unclear. This study aimed to explore the effects and mechanisms of GA in countering sepsis-induced cardiac dysfunction and injury. In lipopolysaccharide (LPS)-induced mouse model, GA alleviated mitochondrial injury and cardiac dysfunction. GA also significantly reduced the production of inflammatory and apoptotic cells, the release of inflammatory indicators, and the expression of oxidative stress-associated and apoptosis-associated markers, but increased the expression of pivotal antioxidant enzymes in hearts from LPS group. These results were consistent with those of in vitro experiments based on H9C2 cells. Database analysis and molecular docking suggested that FoxO1 was targeted by GA, as shown by stable hydrogen bonds formed between GA with SER-39 and ASN-29 of FoxO1. GA reversed LPS-induced downregulation of nucleus FoxO1 and upregulation of p-FoxO1 in H9C2 cells. FoxO1 knockdown abolished the protective properties of GA in vitro. KLF15, TXN2, NOTCH1, and XBP1, as the downstream genes of FoxO1, also exerted protective effects. We concluded that GA could alleviate LPS-induced septic cardiomyopathy via binding to FoxO1 to attenuate cardiomyocyte inflammation, oxidative stress, and apoptosis.


Subject(s)
Cardiomyopathies , Lipopolysaccharides , Mice , Animals , Lipopolysaccharides/adverse effects , Signal Transduction , Molecular Docking Simulation , Myocytes, Cardiac , Cardiomyopathies/chemically induced , Cardiomyopathies/drug therapy , Oxidative Stress , Apoptosis
9.
Front Genet ; 13: 810193, 2022.
Article in English | MEDLINE | ID: mdl-35432443

ABSTRACT

In a recent study, the PD-1 inhibitor has been widely used in clinical trials and shown to improve various cancers. However, PD-1/PD-L1 inhibitors showed a low response rate and were effective for only a small number of cancer patients. Thus, it is important to figure out the issue about the low response rate of immunotherapy. Here, we performed ssGSEA and unsupervised clustering analysis to identify three clusters (clusters A, B, and C) according to different immune cell infiltration status, prognosis, and biological action. Of them, cluster C showed a better survival rate, higher immune cell infiltration, and immunotherapy effect, with enrichment of a variety of immune active pathways including T and B cell signal receptors. In addition, it showed more significant features associated with immune subtypes C2 and C3. Furthermore, we used WGCNA analysis to confirm the cluster C-associated genes. The immune-activated module highly correlated with 111 genes in cluster C. To pick candidate genes in SD/PD and CR/PR patients, we used the least absolute shrinkage (LASSO) and SVM-RFE algorithms to identify the targets with better prognosis, activated immune-related pathways, and better immunotherapy. Finally, our analysis suggested that there were six genes with KLRC3 as the core which can efficiently improve immunotherapy responses with greater efficacy and better prognosis, and our study provided clues for further investigation about target genes associated with the higher response rate of immunotherapy.

10.
Bioorg Med Chem ; 49: 116456, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34628233

ABSTRACT

Acute lung injury (ALI) refers to a common and life-threatening disease attributed to inflammation. However, effective drug treatments have been rare for ALI. Natural products have been considered as a vital source of drug discovery which indicates that it's a workable method to find new anti-inflammatory drugs in natural products. Inspired by the various biological activities of fisetin, we reported the design and synthesis of a series of fisetin derivatives which were also evaluated for their anti-inflammatory activities in J774A.1 macrophages. Most of the obtain derivatives could effectively inhibit the release of IL-6 and TNF-α in vitro experiments without cytotoxicity. The most promising compound 5b exhibited significant in vivo anti-inflammatory activity in the model of LPS-induced ALI in mice. On the whole, this study could provide novel candidates for the treatment of ALI.


Subject(s)
Acute Lung Injury/drug therapy , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Drug Design , Flavonols/pharmacology , Acute Lung Injury/chemically induced , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Cytokines/antagonists & inhibitors , Cytokines/biosynthesis , Dose-Response Relationship, Drug , Flavonols/chemical synthesis , Flavonols/chemistry , Lipopolysaccharides , Macrophages/drug effects , Male , Mice , Mice, Inbred C57BL , Molecular Structure , Structure-Activity Relationship
11.
Zhongguo Zhen Jiu ; 28(2): 95-7, 2008 Feb.
Article in Chinese | MEDLINE | ID: mdl-18405150

ABSTRACT

OBJECTIVE: To observe the therapeutic effect of acupuncture for slimming. METHODS: Eighty cases of simple obesity were randomly divided into an acupuncture group and a medication group, 40 cases in each group. The acupuncture group were treated with body acupuncture, electroacupuncture and auricular acupoint taping and pressing, with Tianshu (ST 25), Guanyuan (CV 4), Sanyinjiao (SP 6) etc. selected for body acupuncture, and auricular acupoints Shenmen, Neifenmi (endocrine), Pi (spleen) etc. selected for ear acupoint taping and pressing. And the medication group were treated with oral administration of Sibutramine. Body weight, body mass index, waist and hip circumferences and waist-hip ratio were determined before and after treatment to evaluate therapeutic effect of slimming. RESULTS: The total effective rate of 87.5% in the acupuncture group was similar to 82.5% in the medication group (P > 0.05). After treatment, body weight, body mass index, waist and hip circumferences and waist-hip ratio significantly decreased in the two groups, but the improvement of waist circumferences and waist-hip ratio in the acupuncture group was better than that in the medication group (P < 0. 05). CONCLUSION: Acupuncture has a definite therapeutic effect in slimming and it can effectively improve body weight, body mass index, waist and hip circumferences and waist-hip ratio in the patient of simple obesity.


Subject(s)
Acupuncture Therapy/methods , Body Mass Index , Obesity/therapy , Waist-Hip Ratio , Adolescent , Adult , Female , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...