Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 13(13): 15680-15689, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33759485

ABSTRACT

Hydrocarbon-based phase change materials (PCMs) are accompanied by an inherent fire risk, which is hindering their further application especially in construction. Molecular-firefighting PCMs can be ideal and promising candidates to simultaneously ensure the highly efficient energy management and fire safety of PCMs. In this work, two novel phosphorus/nitrogen-containing ionic liquids ([DP][MI] and [DP][TEA]), composed of imidazole (MI) or triethylamine (TEA) cations and dicetyl phosphate (DP) anion, were synthesized for fire-proofing thermal energy management. The fire risk assessment confirmed that the extinguishing time of prepared [DP][MI] and [DP][TEA] was greatly shortened to 20 s and 3.5 min from 45 min for controlled sample, respectively. Moreover, the thermal enthalpy of [DP][MI] reached about 99.0 J g-1. In addition, [DP][MI] and [DP][TEA] achieved low supercooling extents of 2.2 and 4.4 °C, separately. Both molecular firefighting and efficient energy management were achieved for [DP][MI] and [DP][TEA]. As applied in wood-plastic composite which is ubiquitous in construction, [DP][TEA] endowed the composite with temperature-regulating capability of about 10 °C in hut test and remarkably suppressed fire hazard of the composite, displaying a potential application value.

2.
ACS Appl Mater Interfaces ; 12(25): 28700-28710, 2020 Jun 24.
Article in English | MEDLINE | ID: mdl-32479048

ABSTRACT

The leakage and fire hazard of organic solid-liquid phase change material (PCM) tremendously limit its long-term and safe application in thermal energy storage and regulation. In this work, novel nanoflake-fabricated organic-inorganic supramolecular hierarchical microspheres denoted as BPL were synthesized through the electrostatically driven assembly of poly(ethylene ammonium phenylphosphamide) (BP) decorated layered double hydroxides using sodium dodecyl sulfate as a template. Then the BPL was simultaneously utilized as a porous supporting material and flame retardant for polyethylene glycol to fabricate shape-stabilized PCM (BS-PCM). Benefiting from the structural uniqueness of the BPL microsphere, the BS-PCM possessed a high latent heat capacity of 116.7 J g-1 and excellent thermoregulatory capability. Moreover, the BS-PCM had no apparent leakage after a 200-cycle heating/cooling process and showed excellent thermal reversibility, superior to similar solid-liquid PCMs reported in recent literature. More interestingly, unlike flammable PEG, BS-PCM showed excellent fire resistance when exposed to a fire source. The unique BPL porous microsphere provided not only a microcontainer with high storage capacity for solid-liquid PCM, but also a fire resistant barrier to PEG, supplying a promising solution for highly efficient and fire-safe thermal energy storage.

3.
Polymers (Basel) ; 12(2)2020 Feb 12.
Article in English | MEDLINE | ID: mdl-32059374

ABSTRACT

Natural rubber (NR) as a kind of commercial polymer or engineering elastomer is widely used in tires, dampers, suspension elements, etc., because of its unique overall performance. For some NR products, their work environment is extremely harsh, facing a serious fire safety challenge. Accordingly, it is important and necessary to endow NR with flame retardancy via different strategies. Until now, different methods have been used to improve the flame retardancy of NR, mainly including intrinsic flame retardation through the incorporation of some flame-retarding units into polymer chains and additive-type flame retardation via adding some halogen or halogen-free flame retardants into NR matrix. For them, the synergistic flame-retarding action is usually applied to simultaneously enhance flame retardancy and mechanical properties, in which some synergistic flame retardants such as organo-montmorillonite (OMMT), carbon materials, halloysite nanotube (HNT), etc., are utilized to achieve the above-mentioned aim. The used flame-retarding units in polymer chains for intrinsic flame retardation mainly include phosphorus-containing small molecules, an unsaturated chemical bonds-containing structure, a cross-linking structure, etc.; flame retardants in additive-type flame retardation contain organic and inorganic flame retardants, such as magnesium hydroxide, aluminum hydroxide, ammonium polyphosphate, and so on. Concerning the flame retardation of NR, great progress has been made in the past work. To achieve the comprehensive understanding for the strategy and recent progress in the flame retardation of NR, we thoroughly analyze and discuss the past and current flame-retardant strategies and the obtained progress in the flame-retarding NR field in this review, and a brief prospect for the flame retardation of NR is also presented.

SELECTION OF CITATIONS
SEARCH DETAIL
...