Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Lancet Microbe ; 4(11): e893-e902, 2023 11.
Article in English | MEDLINE | ID: mdl-37827184

ABSTRACT

BACKGROUND: The 2009 pandemic H1N1 influenza A virus (A(H1N1)pdm09 virus) evolves rapidly and has continued to cause severe infections in children since its emergence in 2009. We aimed to characterise the kinetics of maternally and naturally acquired antibodies against historical A(H1N1)pdm09 strains and to assess the extent to which the response to heterologous strains following infection or vaccination affects observed A(H1N1)pdm09 strain-specific antibody titres in a Chinese paediatric population. METHODS: In this retrospective study, we used residual serum samples from 528 mother-neonate pairs from a non-interventional, longitudinal cohort study in southern China conducted from Sept 20, 2013, to Aug 24, 2018, from six local hospitals in Anhua County, Hunan Province, China. Mother-neonate pairs were eligible for inclusion if the neonates were born after Sept 20, 2013, and their mothers had resided in the study sites for at least 3 months. We tested samples with a haemagglutination inhibition (HAI) assay to measure antibody levels against three historical A(H1N1)pdm09 strains that were antigenically similar to the strains that circulated during the 2009 pandemic (A/Hunan-Kaifu/SWL4204/2009 [SWL4204/09 strain], A/Hunan-Daxiang/SWL1277/2016 [SWL1277/16 strain], and A/Hunan-Yanfeng/SWL185/2018 [SWL185/18 strain]). We also determined the seroprevalence, geometric mean titres (GMTs), transfer ratio of maternal antibodies, and the dynamics of maternally and naturally acquired antibodies in children, from birth to 3 years of age. FINDINGS: 1066 mother-neonate pairs were enrolled in the original cohort between Sept 20, 2013, and Oct 14, 2015. Of these, 528 pairs (523 mothers, 528 neonates) were selected for the present study. The median age of the mothers was 25 years (IQR 23 to 29). 291 (55%) of 528 children were boys and 237 (45%) were girls, and most children (452 [86%]) were breastfed before the age of 6 months. The GMTs and the seroprevalence for the SWL4204/09 strain were higher than those for the SWL1277/16 and SWL185/18 strains among mothers (GMTs: 10·4 [95% CI 9·8 to 11·1] vs 9·3 [8·7 to 9·8] vs 8·0 [7·5 to 8·4], p<0·0001; seroprevalence: 11·1% [95% CI 8·5 to 14·1] vs 6·9% [4·9 to 9·4] vs 4·6% [3·0 to 6·8], p=0·0003) and among neonates (GMTs: 10·7 [10·0 to 11·5] vs 9·4 [8·8 to 10·0] vs 8·1 [7·6 to 8·6], p<0·0001; seroprevalence: 13·4% [10·7 to 16·7] vs 8·7% [6·5 to 11·5] vs 6·1% [4·2 to 8·5], p=0·0002). Regardless of the A(H1N1)pdm09-specific strain, maternal antibodies could be transferred efficiently via the placenta (mean transfer ratios: 1·10 for SWL4204/09 vs 1·09 for SWL1277/16 vs 1·06 for SWL185/18; p=0·93). The A(H1N1)pdm09 strain-specific antibodies waned below the protective threshold of 1:40 within 2 months after birth. After maternal antibody waning, there were periodic increases and decreases in HAI antibody titres against three A(H1N1)pdm09 strains, and such increases were all significantly associated with a higher immune response to heterologous strains. Vaccination against the SWL4204/09 strain was associated with a poor response to the SWL185/18 strain (ß-0·20, 95% CI -0·28 to -0·13; p<0·0001). INTERPRETATION: Our findings suggest low pre-existing immunity against influenza A(H1N1)pdm09 virus among unvaccinated Chinese adult female and paediatric populations. This evidence, together with the rapid decay of maternal antibodies and the observed cross-reactivity among different A(H1N1)pdm09 strains, highlights the importance of accelerating maternal and paediatric influenza vaccination in China. FUNDING: The Key Program of the National Natural Science Foundation of China. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza, Human , Adult , Female , Humans , Infant , Infant, Newborn , Male , Pregnancy , Young Adult , Antibodies, Viral , Cohort Studies , East Asian People , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Longitudinal Studies , Mothers , Retrospective Studies , Seroepidemiologic Studies
2.
Int J Infect Dis ; 128: 91-97, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36581188

ABSTRACT

OBJECTIVES: To quantify the seasonal and antigenic characteristics of influenza to help understand influenza activity and inform vaccine recommendations. METHODS: We employed a generalized linear model with harmonic terms to quantify the seasonal pattern of influenza in China from 2005-2017, including amplitude (circulatory intensity), semiannual periodicity (given two peaks a year), annual peak time, and epidemic duration. The antigenic differences were distinguished as antigenic similarity between 2009 and 2020. We categorized regions above 33° N, between 27° N and 33° N, and below 27° N as the north, central, and south regions, respectively. RESULTS: We estimated that the amplitude in the north region (median: 0.019, 95% CI: 0.018-0.021) was significantly higher than that in the central region (median: 0.011, 95% CI: 0.01-0.012, P <0.001) and south region (median: 0.008, 95% CI: 0.007-0.008, P <0.001) for influenza A virus subtype H3N2 (A/H3N2). The A/H3N2 in the central region had a semiannual periodicity (median: 0.548, 95% CI: 0.517-0.577), while no semiannual pattern was found in other regions or subtypes/lineages. The antigenic similarity was low (below 50% in the 2009-2010, 2014-2015, 2016-2018, and 2019-2020 seasons) for A/H3N2. CONCLUSION: Our study depicted the seasonal pattern differences and antigenic differences of influenza in China, which provides information for vaccination strategies.


Subject(s)
Influenza Vaccines , Influenza, Human , Humans , Influenza, Human/epidemiology , Influenza A Virus, H3N2 Subtype , Seasons , China/epidemiology
3.
Nat Med ; 28(7): 1468-1475, 2022 07.
Article in English | MEDLINE | ID: mdl-35537471

ABSTRACT

Having adopted a dynamic zero-COVID strategy to respond to SARS-CoV-2 variants with higher transmissibility since August 2021, China is now considering whether, and for how long, this policy can remain in place. The debate has thus shifted towards the identification of mitigation strategies for minimizing disruption to the healthcare system in the case of a nationwide epidemic. To this aim, we developed an age-structured stochastic compartmental susceptible-latent-infectious-removed-susceptible model of SARS-CoV-2 transmission calibrated on the initial growth phase for the 2022 Omicron outbreak in Shanghai, to project COVID-19 burden (that is, number of cases, patients requiring hospitalization and intensive care, and deaths) under hypothetical mitigation scenarios. The model also considers age-specific vaccine coverage data, vaccine efficacy against different clinical endpoints, waning of immunity, different antiviral therapies and nonpharmaceutical interventions. We find that the level of immunity induced by the March 2022 vaccination campaign would be insufficient to prevent an Omicron wave that would result in exceeding critical care capacity with a projected intensive care unit peak demand of 15.6 times the existing capacity and causing approximately 1.55 million deaths. However, we also estimate that protecting vulnerable individuals by ensuring accessibility to vaccines and antiviral therapies, and maintaining implementation of nonpharmaceutical interventions could be sufficient to prevent overwhelming the healthcare system, suggesting that these factors should be points of emphasis in future mitigation policies.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents , COVID-19/epidemiology , China/epidemiology , Humans
4.
BMC Med ; 20(1): 130, 2022 04 04.
Article in English | MEDLINE | ID: mdl-35369871

ABSTRACT

BACKGROUND: Hundreds of millions of doses of coronavirus disease 2019 (COVID-19) vaccines have been administered globally, but progress on vaccination varies considerably between countries. We aimed to provide an overall picture of COVID-19 vaccination campaigns, including policy, coverage, and demand of COVID-19 vaccines. METHODS: We conducted a descriptive study of vaccination policy and doses administered data obtained from multiple public sources as of 8 February 2022. We used these data to develop coverage indicators and explore associations of vaccine coverage with socioeconomic and healthcare-related factors. We estimated vaccine demand as numbers of doses required to complete vaccination of countries' target populations according to their national immunization program policies. RESULTS: Messenger RNA and adenovirus vectored vaccines were the most commonly used COVID-19 vaccines in high-income countries, while adenovirus vectored vaccines were the most widely used vaccines worldwide (180 countries). One hundred ninety-two countries have authorized vaccines for the general public, with 40.1% (77/192) targeting individuals over 12 years and 32.3% (62/192) targeting those ≥ 5 years. Forty-eight and 151 countries have started additional-dose and booster-dose vaccination programs, respectively. Globally, there have been 162.1 doses administered per 100 individuals in target populations, with marked inter-region and inter-country heterogeneity. Completed vaccination series coverage ranged from 0.1% to more than 95.0% of country target populations, and numbers of doses administered per 100 individuals in target populations ranged from 0.2 to 308.6. Doses administered per 100 individuals in whole populations correlated with healthcare access and quality index (R2 = 0.59), socio-demographic index (R2 = 0.52), and gross domestic product per capita (R2 = 0.61). At least 6.4 billion doses will be required to complete interim vaccination programs-3.3 billion for primary immunization and 3.1 billion for additional/booster programs. Globally, 0.53 and 0.74 doses per individual in target populations are needed for primary immunization and additional/booster dose programs, respectively. CONCLUSIONS: There is wide country-level disparity and inequity in COVID-19 vaccines rollout, suggesting large gaps in immunity, especially in low-income countries.


Subject(s)
COVID-19 Vaccines , COVID-19 , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Immunization Programs , Policy , Vaccination Coverage
5.
Emerg Microbes Infect ; 11(1): 1205-1214, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35380100

ABSTRACT

SARS-CoV-2 infection causes most cases of severe illness and fatality in older age groups. Over 92% of the Chinese population aged ≥12 years has been fully vaccinated against COVID-19 (albeit with vaccines developed against historical lineages). At the end of October 2021, the vaccination programme has been extended to children aged 3-11 years. Here, we aim to assess whether, in this vaccination landscape, the importation of Delta variant infections could shift COVID-19 burden from adults to children. We developed an age-structured susceptible-infectious-removed model of SARS-CoV-2 transmission to simulate epidemics triggered by the importation of Delta variant infections and project the age-specific incidence of SARS-CoV-2 infections, cases, hospitalizations, intensive care unit admissions, and deaths. In the context of the vaccination programme targeting individuals aged ≥12 years, and in the absence of non-pharmaceutical interventions, the importation of Delta variant infections could have led to widespread transmission and substantial disease burden in mainland China, even with vaccination coverage as high as 89% across the eligible age groups. Extending the vaccination roll-out to include children aged 3-11 years (as it was the case since the end of October 2021) is estimated to dramatically decrease the burden of symptomatic infections and hospitalizations within this age group (39% and 68%, respectively, when considering a vaccination coverage of 87%), but would have a low impact on protecting infants. Our findings highlight the importance of including children among the target population and the need to strengthen vaccination efforts by increasing vaccine effectiveness.


Subject(s)
COVID-19 , Vaccines , Adult , Aged , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Child , China/epidemiology , Humans , Infant , SARS-CoV-2 , Vaccination
6.
Nat Genet ; 54(4): 499-507, 2022 04.
Article in English | MEDLINE | ID: mdl-35347305

ABSTRACT

Genomic surveillance has shaped our understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. We performed a global landscape analysis on SARS-CoV-2 genomic surveillance and genomic data using a collection of country-specific data. Here, we characterize increasing circulation of the Alpha variant in early 2021, subsequently replaced by the Delta variant around May 2021. SARS-CoV-2 genomic surveillance and sequencing availability varied markedly across countries, with 45 countries performing a high level of routine genomic surveillance and 96 countries with a high availability of SARS-CoV-2 sequencing. We also observed a marked heterogeneity of sequencing percentage, sequencing technologies, turnaround time and completeness of released metadata across regions and income groups. A total of 37% of countries with explicit reporting on variants shared less than half of their sequences of variants of concern (VOCs) in public repositories. Our findings indicate an urgent need to increase timely and full sharing of sequences, the standardization of metadata files and support for countries with limited sequencing and bioinformatics capacity.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/genetics , Genomics , Humans , Information Dissemination , SARS-CoV-2/genetics
7.
Clin Infect Dis ; 74(4): 734-742, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34302458

ABSTRACT

Recently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants may pose a threat to immunity. A systematic landscape of neutralizing antibodies against emerging variants is needed. We systematically searched for studies that evaluated neutralizing antibody titers induced by previous infection or vaccination against SARS-CoV-2 variants and collected individual data. We identified 106 studies meeting the eligibility criteria. Lineage B.1.351 (beta), P.1 (gamma) and B.1.617.2 (delta) significantly escaped natural infection-mediated neutralization, with an average of 4.1-fold (95% confidence interval [CI]: 3.6-4.7-fold), 1.8-fold (1.4-2.4-fold), and 3.2-fold (2.4-4.1-fold) reduction in live virus neutralization assay, while neutralizing titers against B.1.1.7 (alpha) decreased slightly (1.4-fold [95% CI: 1.2-1.6-fold]). Serum from vaccinees also led to significant reductions in neutralization of B.1.351 across different platforms, with an average of 7.1-fold (95% CI: 5.5-9.0-fold) for nonreplicating vector platform, 4.1-fold (3.7-4.4-fold) for messenger RNA platform, and 2.5-fold (1.7-2.9-fold) for protein subunit platform. Neutralizing antibody levels induced by messenger RNA vaccines against SARS-CoV-2 variants were similar to, or higher, than that derived from naturally infected individuals.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19 , SARS-CoV-2 , COVID-19/immunology , COVID-19/prevention & control , Humans , Spike Glycoprotein, Coronavirus/genetics , Vaccination
8.
Infect Dis Poverty ; 10(1): 124, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34654478

ABSTRACT

BACKGROUND: China is facing substantial risks of imported coronavirus disease 2019 (COVID-19) cases and a domestic resurgence in the long run, and COVID-19 vaccination is expected to be the long-lasting solution to end the pandemic. We aim to estimate the size of the target population for COVID-19 vaccination at the provincial level in the mainland of China, and summarize the current progress of vaccination programs, which could support local governments in the timely determination and adjustment of vaccination policies and promotional measures. METHODS: We conducted a descriptive study of the entire population in the mainland of China, between December 2020 and August 2021. By extracting provincial-stratified data from publicly available sources, we estimated the size of priority target groups for vaccination programs, and further characterized the ongoing vaccination program at the provincial level, including the total doses administered, the coverage rate, and the vaccination capacity needed to achieve the target coverage of 80% by the end of 2021. We used R (version 4.1.0) to complete the descriptive statistics. RESULTS: The size of the target population shows large differences among provinces, ranging from 3.4 million to 108.4 million. As of 31 August, 2021, the speed of vaccine roll-out differs considerably as well, with the highest coverage occurring in Beijing and Shanghai, where 88.5% and 79.1% of the population has been fully vaccinated, respectively. In 22 of 31 provincial-level administrative divisions (PLADs), more than 70% of the population was administered at least one dose by August. With the current vaccination capacity, the target of 80% coverage could be achieved by 2021 in 28 PLADs. CONCLUSIONS: Disparities exist in the target population size and vaccination progress across provinces in the mainland of China. China has made great strides in the vaccination speed since roll-out, and could basically achieve the targeted vaccine coverage.


Subject(s)
COVID-19 Vaccines , COVID-19 , Immunization Programs , Vaccination , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , Child , Child, Preschool , China/epidemiology , Female , Healthcare Disparities , Humans , Immunization Programs/organization & administration , Infant , Infant, Newborn , Male , Middle Aged , Pregnancy , Program Evaluation , Vaccination/statistics & numerical data , Young Adult
9.
Res Sq ; 2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34611660

ABSTRACT

Genomic surveillance has shaped our understanding of SARS-CoV-2 variants, which have proliferated globally in 2021.We collected country-specific data on SARS-CoV-2 genomic surveillance, sequencing capabilities, public genomic data from multiple public repositories, and aggregated publicly available variant data. Then, different proxies were used to estimate the sequencing coverage and public availability extent of genomic data, in addition to describing the global dissemination of variants. We found that the COVID-19 global epidemic clearly featured increasing circulation of Alpha since the start of 2021, which was rapidly replaced by the Delta variant starting around May 2021. SARS-CoV-2 genomic surveillance and sequencing availability varied markedly across countries, with 63 countries performing routine genomic surveillance and 79 countries with high availability of SARS-CoV-2 sequencing. We also observed a marked heterogeneity of sequenced coverage across regions and countries. Across different variants, 21-46% of countries with explicit reporting on variants shared less than half of their variant sequences in public repositories. Our findings indicated an urgent need to expand sequencing capacity of virus isolates, enhance the sharing of sequences, the standardization of metadata files, and supportive networks for countries with no sequencing capability.

10.
Nat Hum Behav ; 5(8): 1009-1020, 2021 08.
Article in English | MEDLINE | ID: mdl-34158650

ABSTRACT

COVID-19 vaccination is being conducted in over 200 countries and regions to control SARS-CoV-2 transmission and return to a pre-pandemic lifestyle. However, understanding when non-pharmaceutical interventions (NPIs) can be lifted as immunity builds up remains a key question for policy makers. To address this, we built a data-driven model of SARS-CoV-2 transmission for China. We estimated that, to prevent the escalation of local outbreaks to widespread epidemics, stringent NPIs need to remain in place at least one year after the start of vaccination. Should NPIs alone be capable of keeping the reproduction number (Rt) around 1.3, the synergetic effect of NPIs and vaccination could reduce the COVID-19 burden by up to 99% and bring Rt below the epidemic threshold in about 9 months. Maintaining strict NPIs throughout 2021 is of paramount importance to reduce COVID-19 burden while vaccines are distributed to the population, especially in large populations with little natural immunity.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , COVID-19/transmission , Vaccination , China , Disease Outbreaks/prevention & control , Humans
11.
medRxiv ; 2021 May 05.
Article in English | MEDLINE | ID: mdl-33972950

ABSTRACT

Background: Immunity after SARS-CoV-2 infection or vaccination has been threatened by recently emerged SARS-CoV-2 variants. A systematic summary of the landscape of neutralizing antibodies against emerging variants is needed. Methods: We systematically searched PubMed, Embase, Web of Science, and 3 pre-print servers for studies that evaluated neutralizing antibodies titers induced by previous infection or vaccination against SARS-CoV-2 variants and comprehensively collected individual data. We calculated lineage-specific GMTs across different study participants and types of neutralization assays. Findings: We identified 56 studies, including 2,483 individuals and 8,590 neutralization tests, meeting the eligibility criteria. Compared with lineage B, we estimate a 1.5-fold (95% CI: 1.0-2.2) reduction in neutralization against the B.1.1.7, 8.7-fold (95% CI: 6.5-11.7) reduction against B.1.351 and 5.0-fold (95% CI: 4.0-6.2) reduction against P.1. The estimated neutralization reductions for B.1.351 compared to lineage B were 240.2-fold (95% CI: 124.0-465.6) reduction for non-replicating vector platform, 4.6-fold (95% CI: 4.0-5.2) reduction for RNA platform, and 1.6-fold (95% CI: 1.2-2.1) reduction for protein subunit platform. The neutralizing antibodies induced by administration of inactivated vaccines and mRNA vaccines against lineage P.1 were also remarkably reduced by an average of 5.9-fold (95% CI: 3.7-9.3) and 1.5-fold (95% CI: 1.2-1.9). Interpretation: Our findings indicate that the antibody response established by natural infection or vaccination might be able to effectively neutralize B.1.1.7, but neutralizing titers against B.1.351 and P.1 suffered large reductions. Standardized protocols for neutralization assays, as well as updating immune-based prevention and treatment, are needed. Funding: Chinese National Science Fund for Distinguished Young Scholars.

12.
Lancet Glob Health ; 9(5): e598-e609, 2021 05.
Article in English | MEDLINE | ID: mdl-33705690

ABSTRACT

BACKGROUND: A rapidly increasing number of serological surveys for antibodies to SARS-CoV-2 have been reported worldwide. We aimed to synthesise, combine, and assess this large corpus of data. METHODS: In this systematic review and meta-analysis, we searched PubMed, Embase, Web of Science, and five preprint servers for articles published in English between Dec 1, 2019, and Dec 22, 2020. Studies evaluating SARS-CoV-2 seroprevalence in humans after the first identified case in the area were included. Studies that only reported serological responses among patients with COVID-19, those using known infection status samples, or any animal experiments were all excluded. All data used for analysis were extracted from included papers. Study quality was assessed using a standardised scale. We estimated age-specific, sex-specific, and race-specific seroprevalence by WHO regions and subpopulations with different levels of exposures, and the ratio of serology-identified infections to virologically confirmed cases. This study is registered with PROSPERO, CRD42020198253. FINDINGS: 16 506 studies were identified in the initial search, 2523 were assessed for eligibility after removal of duplicates and inappropriate titles and abstracts, and 404 serological studies (representing tests in 5 168 360 individuals) were included in the meta-analysis. In the 82 studies of higher quality, close contacts (18·0%, 95% CI 15·7-20·3) and high-risk health-care workers (17·1%, 9·9-24·4) had higher seroprevalence than did low-risk health-care workers (4·2%, 1·5-6·9) and the general population (8·0%, 6·8-9·2). The heterogeneity between included studies was high, with an overall I2 of 99·9% (p<0·0001). Seroprevalence varied greatly across WHO regions, with the lowest seroprevalence of general populations in the Western Pacific region (1·7%, 95% CI 0·0-5·0). The pooled infection-to-case ratio was similar between the region of the Americas (6·9, 95% CI 2·7-17·3) and the European region (8·4, 6·5-10·7), but higher in India (56·5, 28·5-112·0), the only country in the South-East Asia region with data. INTERPRETATION: Antibody-mediated herd immunity is far from being reached in most settings. Estimates of the ratio of serologically detected infections per virologically confirmed cases across WHO regions can help provide insights into the true proportion of the population infected from routine confirmation data. FUNDING: National Science Fund for Distinguished Young Scholars, Key Emergency Project of Shanghai Science and Technology Committee, Program of Shanghai Academic/Technology Research Leader, National Science and Technology Major project of China, the US National Institutes of Health. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.


Subject(s)
COVID-19 Serological Testing , COVID-19/diagnosis , COVID-19/epidemiology , Humans , Seroepidemiologic Studies
13.
medRxiv ; 2021 May 14.
Article in English | MEDLINE | ID: mdl-33564776

ABSTRACT

COVID-19 vaccination is being conducted in over 190 countries/regions to control SARS-CoV-2 transmission and return to a pre-pandemic lifestyle. However, understanding when non-pharmaceutical interventions (NPIs) can be lifted as immunity builds up remain a key question for policy makers. To address it, we built a data-driven model of SARS-CoV-2 transmission for China. We estimated that to prevent the escalation of local outbreaks to widespread epidemics, stringent NPIs need to remain in place at least one year after the start of vaccination. Should NPIs alone be capable to keep the reproduction number (R t ) around 1.3, the synergetic effect of NPIs and vaccination could reduce up to 99% of COVID-19 burden and bring R t below the epidemic threshold in about 9 months. Maintaining strict NPIs throughout 2021 is of paramount importance to reduce COVID-19 burden while vaccines are distributed to the population, especially in large populations with little natural immunity.

14.
Res Sq ; 2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33594357

ABSTRACT

COVID-19 vaccination programs have been initiated in several countries to control SARS-CoV-2 transmission and return to a pre-pandemic lifestyle. However, understanding when non-pharmaceutical interventions (NPIs) can be lifted as vaccination builds up and how to update priority groups for vaccination in real-time remain key questions for policy makers. To address these questions, we built a data-driven model of SARS-CoV-2 transmission for China. We estimated that, to prevent local outbreaks to escalate to major widespread epidemics, stringent NPIs need to remain in place at least one year after the start of vaccination. Should NPIs be capable to keep the reproduction number (Rt) around 1.3, a vaccination program could reduce up to 99% of COVID-19 burden and bring Rt below the epidemic threshold in about 9 months. Maintaining strict NPIs throughout 2021 is of paramount importance to reduce COVID-19 burden while vaccines are distributed to the population, especially in large populations with little natural immunity.

15.
medRxiv ; 2020 Oct 29.
Article in English | MEDLINE | ID: mdl-32935122

ABSTRACT

BACKGROUND: A rapidly increasing number of serological surveys for anti-SARS-CoV-2 antibodies have been reported worldwide. A synthesis of this large corpus of data is needed. PURPOSE: To evaluate the quality of serological studies and provide a global picture of seroprevalence across demographic and occupational groups, and to provide guidance for conducting better serosurveys. DATA SOURCES: We searched PubMed, Embase, Web of Science, and 4 pre-print servers for English-language papers published from December 1, 2019 to September 25, 2020. STUDY SELECTION: Serological studies evaluating SARS-CoV-2 seroprevalence in humans. DATA EXTRACTION: Two investigators independently extracted data from studies. DATA SYNTHESIS: Most of 230 serological studies, representing tests in >1,400,000 individuals, identified were of low quality based on a standardized study quality scale. In the 51 studies of higher quality, high-risk healthcare workers had higher seroprevalence of 17.1% (95% CI: 9.9-24.4%), compared to low-risk healthcare workers and general population of 5.4% (0.7-10.1%) and 5.3% (4.2-6.4%). Seroprevalence varied hugely across WHO regions, with lowest seroprevalence of general population in Western Pacific region (1.7%, 0.0-5.0%). Generally, the young (<20 years) and the old (≥65 years) were less likely to be seropositive compared to middle-aged (20-64 years) populations.Seroprevalence correlated with clinical COVID-19 reports, with pooled average of 7.7 (range: 2.0 to 23.1) serologically-detected-infections per confirmed COVID-19 case. LIMITATIONS: Some heterogeneity cannot be well explained quantitatively. CONCLUSIONS: The overall quality of seroprevalence studies examined was low. The relatively low seroprevalence among general populations suggest that in most settings, antibody-mediated herd immunity is far from being reached. Given the relatively narrow range of estimates of the ratio of serologically-detected infections to confirmed cases across different locales, reported case counts may help provide insights into the true proportion of the population infected. PRIMARY FUNDING SOURCE: National Science Fund for Distinguished Young Scholars (PROSPERO: CRD42020198253).

SELECTION OF CITATIONS
SEARCH DETAIL
...