Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Cell Death Dis ; 10(6): 415, 2019 05 28.
Article in English | MEDLINE | ID: mdl-31138779

ABSTRACT

Therapeutic antibodies targeting PD-1 have made major breakthroughs in cancer treatment. However, the majority of colorectal cancer (CRC) cases are microsatellite stable (MSS) and do not respond to anti-PD-1-based immunotherapy. Combination therapy will be an ideal strategy to overcome this limitation. Gegen Qinlian decoction (GQD), a classical traditional Chinese medicine (TCM) formula, has been clinically proven to be effective in the treatment of ulcerative colitis (UC) and type 2 diabetes mellitus. Here, a systemic pharmacological study revealed that GQD acts through multiple targets and pathways in the human body. Combination therapy with GQD and anti-mouse PD-1 potently inhibited the growth of CT26 tumours in a xenograft model. Gut microbiota analysis revealed that combination therapy with GQD and anti-mouse PD-1 significantly enriched for s__Bacteroides_acidifaciens and s__uncultured_organism_g__norank_f__Bacteroidales_S24-7_group. Based on metabolomic analyses, profoundly altered metabolites were identified in the combination therapy group. Two metabolic signalling pathways, namely, glycerophospholipid metabolism and sphingolipid metabolism, were explored. In particular, we found that combination therapy with GQD and anti-mouse PD-1 significantly increased the proportion of CD8+ T cells in peripheral blood and tumour tissues. Direct treatment with GQD and anti-mouse PD-1 increased the expression of IFN-γ, which is a critical factor in antitumour immunotherapy. In addition, combination therapy with GQD and anti-mouse PD-1 downregulated PD-1 and increased IL-2 levels, suggesting that the combination therapy could effectively restore T-cell functions by suppressing inhibitory checkpoints. The application of the Chinese medicinal formula GQD with PD-1 blockade-based immunotherapy can be a novel therapeutic strategy for CRC patients with MSS tumours.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Colorectal Neoplasms/drug therapy , Drugs, Chinese Herbal/therapeutic use , Gastrointestinal Microbiome/drug effects , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Colorectal Neoplasms/immunology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/microbiology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/isolation & purification , Drugs, Chinese Herbal/pharmacology , Humans , Lipidomics , Metabolome/drug effects , Mice , Mice, Inbred BALB C , Microsatellite Repeats , Transplantation, Heterologous , Tumor Microenvironment/drug effects
2.
Article in English | MEDLINE | ID: mdl-30891076

ABSTRACT

BACKGROUND: Fatigue is a common, distressing, and persistent symptom for patients with malignant tumor including colorectal cancer (CRC). Although studies of cancer-related fatigue (CRF) have sprung out in recent years, the pathophysiological mechanisms that induce CRF remain unclear, and effective therapeutic interventions have yet to be established. METHODS: To investigate the effect of the traditional Chinese medicine YangZheng XiaoJi (YZXJ) on CRF, we constructed orthotopic colon cancer mice, randomly divided into YZXJ group and control (NS) group. Physical or mental fatigue was respectively assessed by swimming exhaustion time or suspension tail resting time. At the end of the experiment, serum was collected to measure the expression level of inflammatory factors by ELISA and feces to microbiota changes by 16s rDNA, and hepatic glycogen content was detected via the anthrone method. RESULT: The nutritional status of the YZXJ group was better than that of the control group, and there was no statistical difference in tumor weight. The swimming exhaustion times of YZXJ group and control group were (162.80 ± 14.67) s and (117.60 ± 13.42, P < 0.05) s, respectively; the suspension tail resting time of YZXJ group was shorter than that of the control group (49.85 ± 4.56) s and (68.83 ± 7.26) s, P < 0.05)). Serum levels of IL-1ß and IL-6 in YZXJ group were significantly lower than the control group (P < 0.05). Liver glycogen in YZXJ group was (5.18 ± 3.11) mg/g liver tissue, which was significantly higher than that in control group (2.95 ± 2.06) mg/g liver tissue (P < 0.05). At phylum level, increased abundance of Bacteroidetes, Verrucomicrobia, Actinobacteria, and Cyanobacteria and decreased Proteobacteria in YZXJ group emerged as the top differences between the two groups, and the Firmicutes/Bacteroidetes ratio was decreased in YZXJ group compared to the control group. At genus level, the abundance of Parabacteroides, unidentified Saprospiraceae, and Elizabethkingia which all belong to phylum Bacteroidetes were increased, while Arcobacter, Marinobacter, Alkanindiges, Sulfuricurvum, Haliangium, and Thiobacillus in phylum Proteobacteria were decreased after YZXJ intervention. YZXJ can also increase Pirellula, Microbacterium, and Alpinimonas and decrease Rubrobacter and Iamia. CONCLUSION: YZXJ may reduce the physical and mental fatigue caused by colorectal cancer by inhibiting inflammatory reaction, promoting hepatic glycogen synthesis, and changing the composition of intestinal microbiota.

3.
Biomed Res Int ; 2018: 1460835, 2018.
Article in English | MEDLINE | ID: mdl-30539002

ABSTRACT

Lynch syndrome is a genetically and clinically heterogeneous disorder; it is caused by a germline mutation in DNA mismatch repair (MMR) genes. Individuals with a heterozygous mutation in MLH1 have an increased risk for developing colorectal cancer. Here we described a 5-generation Chinese Lynch syndrome family with different severity and onset age. A novel heterozygous germline mutation (c.3G>T, p.Met1Ile) in MLH1 gene was discovered by next generation sequencing. Our study also revealed by qPCR that the MLH1 mRNA expression in peripheral blood of patients in this family was remarkably lower than that of the unaffected carriers and non-carriers. The research results indicated that the mRNA expression level may provide predictive suggestions of treatment and management for carriers with the initiation codon mutation of MLH1 in this family. Further studies are undertaken in this family as well as other families with Lynch syndrome to interrogate the exact reasons affecting the MLH1 mRNA expression level and whether mRNA expression in peripheral blood could be a significant factor for early diagnosis and surveillance of Lynch syndrome.


Subject(s)
Asian People/genetics , Codon, Initiator/genetics , Gene Expression Regulation , Genetic Predisposition to Disease , MutL Protein Homolog 1/genetics , Mutation/genetics , Adult , Age of Onset , Base Sequence , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Family , Female , Humans , Male , Middle Aged , MutL Protein Homolog 1/metabolism , Pedigree , RNA, Messenger/genetics , RNA, Messenger/metabolism
4.
Mol Med Rep ; 17(6): 8423-8431, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29658602

ABSTRACT

The present study evaluated the distribution of sympathetic and parasympathetic nerves and the expression of the α9 nicotinic acetylcholine receptor (α9nAChR) and investigated their potential association with colorectal cancer (CRC) development. The distribution of autonomic nerves and α9nAChR in CRC was detected by immunohistochemistry, which was then used to analyze their association with clinicopathological parameters and prognosis. Sympathetic fibers were primarily observed in the stroma adjacent to cancer cells, whereas parasympathetic fibers were primarily observed in the stroma away from cancer cells. Patients with samples positive for sympathetic nerve fibers had less lymph node invasion and a better prognosis compared with patients with samples negative for sympathetic nerve fibers. The expression of parasympathetic nerves in patients >60 years old was increased compared with patients ≤60 years old. The expression of parasympathetic nerves in patients with lymph node invasion was increased compared with patients without lymph node invasion. The detection of parasympathetic nerves gradually increased as CRC (T stage) advanced. Patients with parasympathetic negative samples had better prognoses compared with patients with parasympathetic positive samples. The expression of α9nAChR was principally localized in cellular membranes and the cytoplasm of CRC tissues and it was revealed to have a positive association with the number of parasympathetic nerves. Increased α9nAChR expression was observed in patients >60 years old compared with patients <60 years old. The detection rate of α9nAChR in tissues from patients with lymph node invasion was increased compared with patients without lymph node invasion. The detection of α9nAChR gradually increased as the CRC stage advanced. The prognoses for patients with α9nAChR negative tissue were improved compared with the prognoses for patients with α9nAChR positive tissue. Sympathetic nerves were primarily detected in the early phases of CRC and indicated a good prognosis. Parasympathetic nerves and α9nAChR were principally observed in the late phases of cancer and indicated a poor prognosis. The present study revealed that parasympathetic nerves may promote the progression of CRC through α9nAChR.


Subject(s)
Autonomic Nervous System/metabolism , Colorectal Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Gene Expression , Receptors, Nicotinic/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/mortality , Colorectal Neoplasms/pathology , Female , Humans , Male , Neoplasm Staging , Prognosis , Receptors, Nicotinic/metabolism
5.
Oncol Lett ; 15(3): 3904-3910, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29456739

ABSTRACT

It remains unknown whether blockade of B-Raf proto-oncogene, serine/threonine kinase (BRAF)V600E signaling and MET proto-oncogene, receptor tyrosine kinase (c-Met) signaling is effective in suppressing the growth of human colorectal cancer (CRC) cells. The present study investigated the effects of the vemurafenib alone and in combination with c-Met inhibitor PHA-665752 on the growth of human CRC cells in vitro and in mouse xenografts. HT-29 and RKO CRC cell lines with BRAFV600E mutations and mice bearing HT-29 xenografts were treated with vemurafenib in the absence or presence of PHA-665752. Cell viability and cycle phase were respectively examined by using the MTT and flow cytometry assay. Immunohistochemistry was conducted to detect the protein expression levels of hepatocyte growth factor (HGF), phosphorylated (p)-c-Met, p-AKT serine/threonine kinase (AKT) and p-extracellular signal-regulated kinase (p-ERK). The MTT assay demonstrated that the growth of RKO and HT-29 cells was inhibited by PHA-665752 in a time- and dose-dependent manner (P<0.05), however no significant suppressive effects were observed with vemurafenib. Relative to the PHA-665752 or vemurafenib stand-alone treatment groups, the combination of PHA-665752 and vemurafenib had a significant inhibitory effect on the proliferation of CRC cell lines (P<0.05). The mean tumor volume in mice treated with vemurafenib in combination with PHA-665752 was significantly smaller compared with those treated with only vemurafenib or PHA-665752 (P<0.05). Flow cytometry assay revealed that the G0/G1 phase frequency was significantly increased in the combination group compared with any other treatment groups (P<0.05). Immunohistochemistry demonstrated that vemurafenib in combination with PHA-665752 effectively induced the expression of p-c-Met, p-AKT and p-ERK, however had no effect on HGF.

6.
Curr Cancer Drug Targets ; 18(3): 278-286, 2018.
Article in English | MEDLINE | ID: mdl-28359236

ABSTRACT

BACKGROUND: It remains unknown whether blockade of c-Met signaling and epidermal growth factor receptor signaling is effective in suppressing the growth of human colorectal cancer (CRC) cells. In this study, we investigated the effects of the c-Met inhibitor PHA-665752 alone and in combination with cetuximab on the growth of human CRC cells in vitro and in mouse xenografts. METHODS: Human CRC cell lines (Caco2, HCT-116, and HT-29) and mice bearing HCT-116 xenografts were treated with cetuximab in the absence or presence of PHA-665752. Cell viability and apoptosis were examined using the MTT and TUNEL assays, respectively. Vimentin was measured by immunohistochemistry as a marker for epithelial-to-mesenchymal transition. Western blotting was used to determine signaling protein expression levels. RESULTS: The MTT assay showed that the growth of Caco2, HCT-116, and HT-29 cells was inhibited by PHA-665752 in a dose-dependent manner, but only Caco2 cell growth was suppressed by cetuximab. Combination treatment with PHA-665752 and cetuximab inhibited the proliferation of Caco2 cells and RAS mutant CRC cell lines. However, relative to the PHA-665752-alone treatment group, HT-29 cells with a BRAF mutation showed no noticeable effect. The mean tumor volume in mice treated with cetuximab in combination with PHA-665752 was significantly smaller than that in the mice treated with only cetuximab (P = 0.033) or PHA-665752 (P < 0.01). Similarly, the expression of vimentin in the mice treated with PHA-665752 in combination with cetuximab was significantly lower than that in the mice treated with cetuximab or PHA-665752 alone (P < 0.05 in each case). TUNEL assays revealed that treatment with PHA-665752 in combination with cetuximab markedly increased CRC cell apoptosis. Western blotting analysis of signaling protein expression showed that PHA- 665752 inhibited Met phosphorylation (P < 0.05). In addition, treatment with cetuximab alone or in combination with PHA-665752 effectively inhibited EGFR phosphorylation (P < 0.05). CONCLUSION: Combination treatment with PHA-665752 and cetuximab suppressed in vitro and in vivo CRC cell growth more than treatment with either agent alone did.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis , Colorectal Neoplasms/pathology , Mutation , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Animals , Cell Proliferation , Cetuximab/administration & dosage , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Humans , In Vitro Techniques , Indoles/administration & dosage , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Sulfones/administration & dosage , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
7.
Neurosci Lett ; 662: 98-104, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-28993208

ABSTRACT

OBJECTIVE: The pathogenesis of sepsis associated encephalopathy (SAE) remains poorly understood. Vagus nerve plays an important role in gut-microbiota-brain axis. This study aimed to investigate whether vague nerve is a key mediator of the impact of intestinal microbiota on SAE. METHODS: Male rats were randomly divided into four groups (n=20): SHAM (SH) group, lipopolysaccharide (LPS) group, fecal microbiota transplantation (FMT) +LPS group, and vagotomy (VGX)+LPS+FMT group. The left cervical vagotomy was performed 30min before LPS administration in LPS+FMT+VGX group. LPS+ FMT and LPS+FMT+VGX groups received nasogastric infusion of feces from healthy donor three times a day. Fecal samples were collected every two days to monitor changes in microbiota composition by 16S rDNA analysis. Brain function was evaluated by behavioral tests and EEG. The levels of tumor necrosis factor alpha (TNF-α), interleukin (IL)-1ß, IL-6, IL-10 in brain cortex were detected by ELISA. The expression of Iba-1 in brain cortex was assessed by immunohistochemistry and Western blot analysis. RESULTS: Significant modification of microbiota composition, characterized by a profound increase of commensals in the Firmicutes phylum and depletion of opportunistic organisms in the Proteobacteria phylum, was observed in FMT groups compared to LPS group. Furthermore, we identified a reconstituted bacterial community enriched in Firmicutes and depleted of Proteobacteria. In both FMT groups the diversity of the fecal microbiota and the microbiota composition were similar to SH group. LPS mice treated with FMT demonstrated a better spatial memory and less EEG abnormalities, significantly attenuated levels of IL-1ß, IL-6, TNF-α, and decreased number of Iba-1 positive microglia in the cortex, but these beneficial effects of FMT were reversed by VGX. CONCLUSIONS: FMT can change intestinal microbiota in sepsis patients, and vagus nerve is a key mediator between intestinal microbiota and SAE. These findings suggest that FMT and vagus nerve are potential therapy targets for treating SAE.


Subject(s)
Gastrointestinal Microbiome/physiology , Sepsis-Associated Encephalopathy/microbiology , Sepsis-Associated Encephalopathy/physiopathology , Vagus Nerve/physiopathology , Animals , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Cytokines/metabolism , Feces/microbiology , Hippocampus/metabolism , Lipopolysaccharides/pharmacology , Male , Memory , Microglia/metabolism , Rats, Sprague-Dawley , Sepsis-Associated Encephalopathy/psychology , Spatial Learning , Vagus Nerve/microbiology
8.
Oncol Lett ; 11(4): 2879-2885, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27073569

ABSTRACT

The aim of the present study was to investigate the effect of hepatocyte growth factor receptor (c-MET) inhibition on the viability of colon cancer cells and xenografts exposed to irradiation using short hairpin (sh)RNA or the c-MET inhibitor PHA665752. The underlying mechanisms were also investigated. Human colorectal adenocarcinoma HT-29 cells were infected with a lentivirus expressing shRNAs against c-MET and were irradiated at 0, 2, 4, 6 and 8 Gy. The viability of the cells was assessed by alamarBlue® assays. Mice bearing human colon carcinoma SW620 xenografts were randomly selected to receive 2.5% dimethyl sulfoxide (DMSO), 25 mg/kg PHA665752 intraperitoneally once every 2 days for 3 weeks, irradiation at 10 Gy, or 25 mg/kg PHA665752 intraperitoneally once every 2 days for 3 weeks followed 24 h later by irradiation at 10 Gy. The mean tumor volume (MTV) was measured. The apoptotic rate of cells was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assays, and double stranded break marker antibody γ-H2AX and hypoxia inducible factor (HIF)-1α expression was examined by immunohistochemistry. alamarBlue assays revealed that c-MET downregulation by shRNA markedly accentuated the irradiation-induced reduction in the viability of HT-29 cells compared with HT-29 cells irradiated at the same doses (P<0.05). A combination of irradiation and PHA665752 caused an additional reduction in the MTV (382.8±42.4 mm3; P<0.01 vs. irradiation and PHA665752, 998.0±180.6 and 844.8±190.0 mm3, respectively). TUNEL assays revealed that irradiation and PHA665752 alone caused significant apoptosis of the SW620 cells in the tumor xenografts (P<0.01 vs. DMSO). The apoptotic index in the tumor xenografts of mice treated with a combination of irradiation and PHA665752 was significantly increased compared with mice treated with either agent alone (P<0.01). The combination of irradiation and PHA665752 was also associated with a marked increase in γ-H2AX levels and a significant decrease in HIF-1α expression in the xenografts (P<0.01). In conclusion, c-MET inhibition sensitizes colorectal cancer cells to irradiation by enhancing the formation of DNA double strand breaks and possibly alleviating tumor hypoxia.

9.
Oncol Rep ; 35(2): 1222, 2016 02.
Article in English | MEDLINE | ID: mdl-26718652

ABSTRACT

Oncol Rep 33: [Related article:] 2681-2688, 2015; DOI: 10.3892/or.2015.3897 After the publication of the article, it has been brought to the authors' attention by an interested reader that we had made an error regarding the colon cancer cell line in the manuscript. The error relates to Materials and methods, as well as Results, the colon cancer cell line in the Transwell migration assay and Flow cytometric detection of CXCR4 expression is HCT-116 rather than SW620. Accordingly, the correct legends in Figs. 3 and 6 in the paper are HCT-116 cells. This error does not affect the overall conclusions reported in the present study. We sincerely apologize for this mistake, and thank the reader of our article who drew this matter to our attention. Furthermore, we regret any inconvenience this error may have caused.

10.
Oncol Rep ; 33(6): 2681-8, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25846512

ABSTRACT

The aim of the present study was to examine the role of protease-activated receptor-1 (PAR1)-stimulated platelet activation in the epithelial-mesenchymal transition (EMT) and migration of colon cancer cells, and to identify the underlying mechanisms. TFLLR-NH2, a PAR1 agonist, was used to activate platelets and the platelet supernatants were used to treat the SW620 colon cancer cell line. Expression of E-cadherin and vimentin on SW620 cells was detected by immunofluorescence and western blotting, and the level of the transforming growth factor ß1 (TGF-ß1) was measured using ELISA following the activation of platelets by TFLLR-NH2. miR-200b expression was detected using quantitative PCR in SW620 cells. In order to investigate the chemotactic ability of the SW620 cells, the expression of CXC chemokine receptor type 4 (CXCR4) was measured by flow cytometry. Transwell migration assays were performed following exposure of the cells to the supernatant of PAR1-activated platelets. SW620 cells cultured in the supernatant of TFLLR-NH2-activated platelets upregulated E-cadherin expression and downregulated the vimentin expression. In the in vitro platelet culture system, a TFLLR-NH2 dose-dependent increase of secreted TGF-ß1 was detected in the supernatant. The activation of PAR1 on the platelets led to the inhibition of miR-200b expression in the SW620 cells that were cultured in platelet-conditioned media. The number of SW620 cells that penetrated through the Transwell membrane increased with the dose of TFLLR-NH2 used to treat the platelets. The percentage of CXCR4-positive SW620 cells was significantly higher when they were exposed to the supernatant of platelets cultured for 24 h with PAR1 agonist than when cultured in non-conditioned media (40.89 ± 6.74 vs. 3.47 ± 1.40%, P < 0.01). Platelet activation with a PAR1 agonist triggered TGF-ß secretion, which induced EMT of SW620 human colon cancer cells via the downregulation of miR-200b expression, and activated platelets had a chemotactic effect on colon cancer cells mediated by the upregulation of CXCR4 on the cell surface.


Subject(s)
Colonic Neoplasms/genetics , MicroRNAs/genetics , Receptor, PAR-1/biosynthesis , Receptors, CXCR4/genetics , Transforming Growth Factor beta1/genetics , Cadherins/biosynthesis , Cell Line, Tumor , Cell Movement , Chemotaxis/drug effects , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Epithelial-Mesenchymal Transition/genetics , Humans , MicroRNAs/biosynthesis , Oligopeptides/administration & dosage , Platelet Activation/genetics , Receptor, PAR-1/genetics , Receptors, CXCR4/biosynthesis , Transforming Growth Factor beta1/biosynthesis , Vimentin/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...