Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38489169

ABSTRACT

BACKGROUND: At present, most articles mainly focused on the diagnosis of thyroid nodules by using artificial intelligence (AI), and there was little research on the detection performance of AI in thyroid nodules. OBJECTIVE: To explore the value of a real-time AI based on computer-aided diagnosis system in the detection of thyroid nodules and to analyze the factors influencing the detection accuracy. METHODS: From June 1, 2022 to December 31, 2023, 224 consecutive patients with 587 thyroid nodules were prospective collected. Based on the detection results determined by two experienced radiologists (both with more than 15 years experience in thyroid diagnosis), the detection ability of thyroid nodules of radiologists with different experience levels (junior radiologist with 1 year experience and senior radiologist with 5 years experience in thyroid diagnosis) and real-time AI were compared. According to the logistic regression analysis, the factors influencing the real-time AI detection of thyroid nodules were analyzed. RESULTS: The detection rate of thyroid nodules by real-time AI was significantly higher than that of junior radiologist (P = 0.013), but lower than that of senior radiologist (P = 0.001). Multivariate logistic regression analysis showed that nodules size, superior pole, outside (near carotid artery), close to vessel, echogenicity (isoechoic, hyperechoic, mixed-echoic), morphology (not very regular, irregular), margin (unclear), ACR TI-RADS category 4 and 5 were significant independent influencing factors (all P < 0.05). With the combination of real-time AI and radiologists, junior and senior radiologist increased the detection rate to 97.4% (P < 0.001) and 99.1% (P = 0.015) respectively. CONCLUSONS: The real-time AI has good performance in thyroid nodule detection and can be a good auxiliary tool in the clinical work of radiologists.

2.
Exp Ther Med ; 22(4): 1143, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34504589

ABSTRACT

The inflammatory response is closely associated with sepsis occurrence and progression. Damage to the function of the intestinal mucosal barrier is considered to be the ῾initiation factor᾿ for the development of multiple organ dysfunction syndrome, which is the most severe progression of sepsis. The aim of the present study was to investigate whether gadolinium chloride (GdCl3) could alleviate the systemic inflammatory response and protect the function of the intestinal mucosal barrier in a rat model of sepsis. The mechanism underlying this protective effect was also explored. Sprague-Dawley rats were divided into four groups: Sham, sham + GdCl3, cecal ligation and puncture (CLP; a model of sepsis) and CLP + GdCl3. In each group, blood was collected from the abdominal aorta, and intestinal tissue was collected after 6, 12 and 24 h of successful modeling. Levels of tumor necrosis factor-α, interleukin (IL)-6 and IL-1ß were determined using ELISA. Western blot analysis was used to determine levels of occludin, tight junction protein ZO-1 (ZO-1), myosin light chain kinase 3 (MLCK), NF-κB and caspase-3 in intestinal tissues. Hematoxylin-eosin staining was used to observe the degree of damage to intestinal tissue. The results indicated that in CLP sepsis model rats treated with GdCl3, the release of systemic and intestinal pro-inflammatory factors was reduced and tissue damage was alleviated when compared with untreated CLP rats. Additionally, the expression of occludin and ZO-1 was increased, while that of NF-κB, MLCK, and caspase-3 was reduced in the CLP + GdCl3 rats compared with the CLP rats. GdCl3 may alleviate systemic and intestinal inflammatory responses and reduce the expression of MLCK through inhibition of the activation of NF-kB. The results of the present study also indicated that GdCl3 promoted the expression of occludin and ZO-1. GdCl3 was also demonstrated to reduce cell apoptosis through the inhibition of caspase-3 expression.

3.
Curr Microbiol ; 73(4): 574-81, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27447799

ABSTRACT

Several reports have highlighted that many plant growth-promoting endophytic bacteria (PGPE) can assist their host plants in coping with various biotic and abiotic stresses. However, information about the PGPE colonizing in the halophytes is still scarce. This study was designed to isolate and characterize PGPE from salt-accumulating halophyte Salicornia europaea grown under extreme salinity and to evaluate in vitro the bacterial mechanisms related to plant growth promotion. A total of 105 isolates were obtained from the surface-sterilized roots, stems, and assimilation twigs of S. europaea. Thirty-two isolates were initially selected for their ability to produce 1-aminocyclopropane-1-carboxylate deaminase as well as other properties such as production of indole-3-acetic acid and phosphate-solubilizing activities. The 16S rRNA gene-sequencing analysis revealed that these isolates belong to 13 different genera and 19 bacterial species. For these 32 strains, seed germination and seedling growth in axenically grown S. europaea seedlings at different NaCl concentrations (50-500 mM) were quantified. Five isolates possessing significant stimulation of the host plant growth were obtained. The five isolates were identified as Bacillus endophyticus, Bacillus tequilensis, Planococcus rifietoensis, Variovorax paradoxus, and Arthrobacter agilis. All the five strains could colonize and can be reisolated from the host plant interior tissues. These results demonstrate that habitat-adapted PGPE isolated from halophyte could enhance plant growth under saline stress conditions.


Subject(s)
Bacteria/isolation & purification , Chenopodiaceae/microbiology , Endophytes/isolation & purification , Plant Growth Regulators/metabolism , Salt-Tolerant Plants/microbiology , Sodium Chloride/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Chenopodiaceae/growth & development , Chenopodiaceae/metabolism , Endophytes/classification , Endophytes/genetics , Endophytes/metabolism , Indoleacetic Acids/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/microbiology , Salt-Tolerant Plants/growth & development , Salt-Tolerant Plants/metabolism
4.
Curr Microbiol ; 72(5): 557-62, 2016 May.
Article in English | MEDLINE | ID: mdl-26787546

ABSTRACT

Endophytic bacterial communities of halophyte Salicornia europaea roots were analyzed by 16S rRNA gene pyrosequencing. A total of 20,151 partial 16S rRNA gene sequences were obtained. These sequences revealed huge amounts of operational taxonomic units (OTUs), that is, 747-1405 OTUs in a root sample, at 3 % cut-off level. Root endophytes mainly comprised four phyla, among which Proteobacteria was the most represented, followed by Bacteroidetes, Actinobacteria, and Firmicutes. Gammaproteobacteria was the most abundant class of Proteobacteria, followed by Betaproteobacteria and Alphaproteobacteria. Genera Pantoea, Halomonas, Azomonas, Serpens, and Pseudomonas were shared by all growth periods. A marked difference in endophytic bacterial communities was evident in roots from different host life-history stages. Gammaproteobacteria increased during the five periods, while Betaproteobacteria decreased. The richest endophytic bacteria diversity was detected in the seedling stage. Endophytic bacteria diversity was reduced during the flowering stage and fruiting stage. The five libraries contained 2321 different OTUs with 41 OTUs in common. As a whole, this study first surveys communities of endophytic bacteria by tracing crucial stages in the process of halophyte growth using high-throughput sequencing methods.


Subject(s)
Bacteria/isolation & purification , Biodiversity , Chenopodiaceae/microbiology , Endophytes/isolation & purification , Bacteria/classification , Bacteria/genetics , Bacteria/growth & development , Endophytes/classification , Endophytes/genetics , Endophytes/growth & development , Phylogeny , Plant Roots/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...