Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
Int J Biol Macromol ; : 132933, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38862322

ABSTRACT

Quaternary-ammonium chitosan (CT-CTA) is a popular water treatment agent, and its electropositivity and cation strength are improved compared with chitosan. The use of CT-CTA is widely advocated to remove suspended particles and organic matter from wastewater. However, the solubility of CT-CTA is an important factor affecting the performance of CT-CTA, which is a neglected problem in previous studies. In the study, CT-CTA with different solubilities were prepared by adjusting pH from 2 to 7 in preparation, and their applications were explored in wastewater. When the pH was 2, 2.5, or 3, the obtained CT-CTA was a dissolved state. The turbidity and color removal were 95 % - 98 % and 60 % - 74 %, respectively. When the pH was 4, 5, 6, or 7, the obtained CT-CTA was a solid state. The turbidity and color removal were 30 % - 63 % and 90 % - 97 %, respectively. For domestic-wastewater treatment, CT-CTA in a dissolved state removed 92 % of turbidity and 50 % of chemical oxygen demand (COD). CT-CTA in a solid state removed 86 % of turbidity and 64 % of COD with poly aluminum chloride (PAC). The results illustrated the performance of CT-CTA with different solubilities, which can broaden its application in wastewater treatment.

2.
ACS Appl Mater Interfaces ; 16(23): 29805-29822, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38830200

ABSTRACT

Periprosthetic osteolysis induced by the ultrahigh-molecular-weight polyethylene (UHMWPE) wear particles is a major complication associated with the sustained service of artificial joint prostheses and often necessitates revision surgery. Therefore, a smart implant with direct prevention and repair abilities is urgently developed to avoid painful revision surgery. Herein, we fabricate a phosphatidylserine- and polyethylenimine-engineered niobium carbide (Nb2C) MXenzyme-coated micro/nanostructured titanium implant (PPN@MNTi) that inhibits UHMWPE particle-induced periprosthetic osteolysis. The specific mechanism by which PPN@MNTi operates involves the bioresponsive release of nanosheets from the MNTi substrate within an osteolysis microenvironment, initiated by the cleavage of a thioketal-dopamine molecule sensitive to reactive oxygen species (ROS). Subsequently, functionalized Nb2C MXenzyme could target macrophages and escape from lysosomes, effectively scavenging intracellular ROS through its antioxidant nanozyme-mimicking activities. This further achieves the suppression of osteoclastogenesis by inhibiting NF-κB/MAPK and autophagy signaling pathways. Simultaneously, based on the synergistic effect of MXenzyme-integrated coatings and micro/nanostructured topography, the designed implant promotes the osteogenic differentiation of bone mesenchymal stem cells to regulate bone homeostasis, further achieving advanced osseointegration and alleviable periprosthetic osteolysis in vivo. This study provides a precise prevention and repair strategy of periprosthetic osteolysis, offering a paradigm for the development of smart orthopedic implants.


Subject(s)
Niobium , Osteogenesis , Osteolysis , Osteogenesis/drug effects , Osteolysis/pathology , Osteolysis/prevention & control , Osteolysis/metabolism , Niobium/chemistry , Mice , Animals , Polyethylenes/chemistry , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Titanium/chemistry , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Osteoclasts/drug effects , Osteoclasts/metabolism
3.
J Nanobiotechnology ; 22(1): 325, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858695

ABSTRACT

BACKGROUND: Osteoarthritis (OA) is an aging-related degenerative joint disorder marked by joint discomfort and rigidity. Senescent chondrocytes release pro-inflammatory cytokines and extracellular matrix-degrading proteins, creating an inflammatory microenvironment that hinders chondrogenesis and accelerates matrix degradation. Targeting of senescent chondrocytes may be a promising approach for the treatment of OA. Herein, we describe the engineering of an injectable peptide-hydrogel conjugating a stem cell-homing peptide PFSSTKT for carrying plasmid DNA-laden nanoparticles and Tanshinon IIA (pPNP + TIIA@PFS) that was designed to attenuate OA progression by improving the senescent microenvironment and fostering cartilage regeneration. RESULTS: Specifically, pPNP + TIIA@PFS elevates the concentration of the anti-aging protein Klotho and blocks the transmission of senescence signals to adjacent healthy chondrocytes, significantly mitigating chondrocyte senescence and enhancing cartilage integrity. Additionally, pPNP + TIIA@PFS recruit bone mesenchymal stem cells and directs their subsequent differentiation into chondrocytes, achieving satisfactory chondrogenesis. In surgically induced OA model rats, the application of pPNP + TIIA@PFS results in reduced osteophyte formation and attenuation of articular cartilage degeneration. CONCLUSIONS: Overall, this study introduces a novel approach for the alleviation of OA progression, offering a foundation for potential clinical translation in OA therapy.


Subject(s)
Chondrocytes , Chondrogenesis , Glucuronidase , Hydrogels , Klotho Proteins , Mesenchymal Stem Cells , Osteoarthritis , Plasmids , Rats, Sprague-Dawley , Animals , Osteoarthritis/therapy , Osteoarthritis/drug therapy , Hydrogels/chemistry , Rats , Chondrocytes/metabolism , Chondrocytes/drug effects , Glucuronidase/metabolism , Glucuronidase/pharmacology , Chondrogenesis/drug effects , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Male , Cartilage, Articular/drug effects , Cartilage, Articular/metabolism , Disease Progression , Nanoparticles/chemistry , Humans , DNA , Cellular Senescence/drug effects , Cell Differentiation/drug effects
4.
Dalton Trans ; 53(22): 9315-9322, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38747185

ABSTRACT

The synthesis of a homochiral building block based on L-tartrate-chromium(III) complex anions is reported. The dinuclear complex anion, which contains two bridging L-tartrate ligands and one aromatic N-donor ligand coordinated to chromium(III) ions, exhibits a boat conformation in which intramolecular resonance-assisted hydrogen bonding is present. The sodium L-tartrate-chromium(III) compound with the formula Na[Cr2(bpy)2(L-tart)2H]·9H2O (1) crystallizes from a methanol-water solution as a high water content material in the monoclinic space group P2. The as-synthesized compound is only stable at high relative humidity and undergoes structural transformations during drying, which are accompanied by water loss. However, these transformations are reversible and upon wetting, the material returns to its high water content structure. Based on a combination of experimental techniques (PXRD, in situ ATR-FTIR and EPR spectroscopy), the structure of the complex anions appears to be insensitive to the humidity variable processes (wetting and drying). Due to the presence of several hydrogen acceptor and donor groups in the L-tartrate-chromium(III) complex anion, we investigated the proton transport properties of a sodium L-tartrate-chromium(III) compound by impedance spectroscopy under dry and wet conditions at different temperatures. Since the relative humidity affects the structural transformations in this system, it also has a large influence on the proton conductivity, which varies by up to four orders of magnitude depending on the degree of hydration. These results confirm that the proton conductivity can be tuned in flexible structures in which non-covalent interactions determine the crystal packing.

5.
Bioact Mater ; 38: 137-153, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38699244

ABSTRACT

Enhancing the regeneration of cartilage defects remains challenging owing to limited innate self-healing as well as acute inflammation arising from the overexpression of reactive oxygen species (ROS) in post-traumatic microenvironments. Recently, stem cell-derived exosomes (Exos) have been developed as potential cell-free therapy for cartilage regeneration. Although this approach promotes chondrogenesis, it neglects the emerging inflammatory microenvironment. In this study, a smart bilayer-hydrogel dual-loaded with sodium diclofenac (DC), an anti-inflammatory drug, and Exos from bone marrow-derived mesenchymal stem cells was developed to mitigate initial-stage inflammation and promote late-stage stem-cell recruitment and chondrogenic differentiation. First, the upper-hydrogel composed of phenylboronic-acid-crosslinked polyvinyl alcohol degrades in response to elevated levels of ROS to release DC, which mitigates oxidative stress, thus reprogramming macrophages to the pro-healing state. Subsequently, Exos are slowly released from the lower-hydrogel composed of hyaluronic acid into an optimal microenvironment for the stimulation of chondrogenesis. Both in vitro and in vivo assays confirmed that the dual-loaded bilayer-hydrogel reduced post-traumatic inflammation and enhanced cartilage regeneration by effectively scavenging ROS and reprogramming macrophages. The proposed platform provides multi-staged therapy, which allows for the optimal harnessing of Exos as a therapeutic for cartilage regeneration.

6.
Cell Death Differ ; 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762597

ABSTRACT

Stress-adaptive mechanisms enabling cancer cells to survive under glucose deprivation remain elusive. N6-methyladenosine (m6A) modification plays important roles in determining cancer cell fate and cellular stress response to nutrient deficiency. However, whether m6A modification functions in the regulation of cancer cell survival under glucose deprivation is unknown. Here, we found that glucose deprivation reduced m6A modification levels. Increasing m6A modification resulted in increased hepatoma cell necrosis under glucose deprivation, whereas decreasing m6A modification had an opposite effect. Integrated m6A-seq and RNA-seq revealed potential targets of m6A modification under glucose deprivation, including the transcription factor FOSL1; further, glucose deprivation upregulated FOSL1 by inhibiting FOSL1 mRNA decay in an m6A-YTHDF2-dependent manner through reducing m6A modification in its exon1 and 5'-UTR regions. Functionally, FOSL1 protected hepatoma cells against glucose deprivation-induced necrosis in vitro and in vivo. Mechanistically, FOSL1 transcriptionally repressed ATF3 by binding to its promoter. Meanwhile, ATF3 and MAFF interacted via their leucine zipper domains to form a heterodimer, which competed with NRF2 for binding to antioxidant response elements in the promoters of NRF2 target genes, thereby inhibiting their transcription. Consequently, FOSL1 reduced the formation of the ATF3-MAFF heterodimer, thereby enhancing NRF2 transcriptional activity and the antioxidant capacity of glucose-deprived-hepatoma cells. Thus, FOSL1 alleviated the necrosis-inducing effect of glucose deprivation-induced reactive oxygen species accumulation. Collectively, our study uncovers the protective role of m6A-FOSL1-ATF3 axis in hepatoma cell necrosis under glucose deprivation, and may provide new targets for cancer therapy.

7.
Am J Physiol Gastrointest Liver Physiol ; 326(6): G697-G711, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38591127

ABSTRACT

Sterol regulatory element binding protein (SREBP) cleavage-activating protein (SCAP) is a widely expressed membrane glycoprotein that acts as an important modulator of lipid metabolism and inflammatory stress. N-glycosylation of SCAP has been suggested to modulate cancer development, but its role in nonalcoholic steatohepatitis (NASH) is poorly understood. In this study, the N-glycosylation of SCAP was analyzed by using sequential trypsin proteolysis and glycosidase treatment. The liver cell lines expressing wild-type and N-glycosylation sites mutated SCAP were constructed to investigate the N-glycosylation role of SCAP in regulating inflammation and lipid accumulation as well as the underlying mechanisms. The hepatic SCAP protein levels were significantly increased in C57BL/6J mice fed with Western diet and sugar water (WD + SW) and diabetic db/db mice, which exhibited typical liver steatosis and inflammation accompanied with hyperglycemia. In vitro, the enhanced N-glycosylation by high glucose increased the protein stability of SCAP and hence increased its total protein levels, whereas the ablation of N-glycosylation significantly decreased SCAP protein stability and alleviated lipid accumulation and inflammation in hepatic cell lines. Mechanistically, SCAP N-glycosylation increased not only the SREBP-1-mediated acetyl-CoA synthetase 2 (ACSS2) transcription but also the AMPK-mediated S659 phosphorylation of ACCS2 protein, causing the enhanced ACSS2 levels in nucleus and hence increasing the histone H3K27 acetylation (H3K27ac), which is a key epigenetic modification associated with NASH. Modulating ACSS2 expression or its location in the nuclear abolished the effects of SCAP N-glycosylation on H3K27ac and lipid accumulation and inflammation. In conclusion, SCAP N-glycosylation aggravates inflammation and lipid accumulation through enhancing ACSS2-mediated H3K27ac in hepatocytes.NEW & NOTEWORTHY N-glycosylation of SCAP exacerbates inflammation and lipid accumulation in hepatocytes through ACSS2-mediated H3K27ac. Our data suggest that SCAP N-glycosylation plays a key role in regulating histone H3K27 acetylation and targeting SCAP N-glycosylation may be a new strategy for treating nonalcoholic steatohepatitis (NASH).


Subject(s)
Histones , Intracellular Signaling Peptides and Proteins , Lipid Metabolism , Membrane Proteins , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease , Animals , Glycosylation , Histones/metabolism , Acetylation , Mice , Membrane Proteins/metabolism , Membrane Proteins/genetics , Lipid Metabolism/physiology , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Male , Humans , Liver/metabolism , Liver/pathology
8.
Polymers (Basel) ; 16(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38674959

ABSTRACT

Biodegradable composite films comprising of poly(butylene adipate-co-terephthalate) (PBAT), polylactic acid (PLA), and tetrapod-zinc oxide (T-ZnO) whisker were prepared by a melt-extrusion and blow molding process. The effect of the incorporation of the T-ZnO whisker (1 to 7 wt.%) in the PBAT/PLA blend film was studied systematically. The composite films with an optimal T-ZnO whisker concentration of 3 wt.% exhibited the highest mechanical (tensile strength ~32 MPa), rheological (complex viscosity~1200 Pa.s at 1 rad/s angular frequency), and gas barrier (oxygen permeability~20 cc/m2·day) properties, whereas the composite films with 7 wt.% T-ZnO whiskers exhibited the highest antibacterial properties. The developed composite films can find potential application as antibacterial food packaging materials.

9.
Vet Microbiol ; 290: 110004, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38281324

ABSTRACT

Bovine viral diarrhea virus (BVDV) infection can result in typical peripheral blood lymphopenia and immune dysfunction. However, the molecular mechanism underlying the onset of lymphopenia remains unclear. B and T lymphocyte attenuator (BTLA) is a novel immune checkpoint molecule that primarily inhibits activation and proliferation of T cells. Blockade of BTLA with antibodies can boost the proliferation and anti-viral immune functions of T cells. Nonetheless, the immunomodulatory effects of BTLA in CD8+ T cells during BVDV infection remain unknown. Therefore, BTLA expression was measured in bovine peripheral blood CD8+ T cells infected with BVDV in vitro. Furthermore, the effects of BTLA or PD-1 blockade on CD8+ T cell activation, proliferation, and anti-viral immunological activities were investigated, as well as expression of signaling molecules downstream of BTLA, both alone and in combination. The results demonstrated that BTLA and PD-1 mRNA and protein levels were considerably increased in CD8+ T cells infected with cytopathic and non-cytopathic (NCP) BVDV. Surprisingly, as compared to blockade of either BTLA or PD-1, blockade of both dramatically increased proliferation and expression of CD25 and p-EKR of CD8+ T cells infected with NCP BVDV. Furthermore, blockade of BTLA, but not PD-1, had no effect on BVDV replication or IFN-γ expression. These findings confirmed the immunomodulatory roles of BTLA during BVDV infection, as well as the synergistic role of BTLA and PD-1 in NCP BVDV infection, thereby providing new insights to promote activation and the anti-viral immunological activities of CD8+ T cells.


Subject(s)
Diarrhea Virus 1, Bovine Viral , Diarrhea Viruses, Bovine Viral , Lymphopenia , Animals , CD8-Positive T-Lymphocytes , Programmed Cell Death 1 Receptor , Lymphopenia/veterinary , Cell Proliferation
10.
Cancer Sci ; 115(2): 477-489, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38081591

ABSTRACT

Inhibition of cholesterol de novo synthesis (DNS) by statins has controversial effects on the treatment of hepatocellular carcinoma (HCC). High fatty acid conditions have been reported to limit the effect of statins on metabolism diseases. Whether high fatty acid conditions interfere with the effect of statins on HCC remains unclear. Here, we reported that inhibiting cholesterol DNS with atorvastatin promoted the oncogenic capabilities of diethylnitrosamine (DEN) in mice fed high fatty acid diets (HFD). The combined analysis of metabolomics and transcriptomics revealed that arachidonic acid (AA) metabolism was the most significant changed pathway between mice with and without atorvastatin treatment. In vitro, in the presence of AA precursor linoleic acid (LA), atorvastatin promoted the proliferation and migration ability of HCC cell lines. However, in the absence of LA, these phenomena disappeared. TCGA and tissue microarray examination revealed that prostaglandin e synthase 2 (PTGES2), a key enzyme in AA metabolism, was associated with the poor outcome of HCC patients. Overexpression of PTGES2 promoted the proliferation and migration of HCC cell lines, and knockdown of PTGES2 inhibited the proliferation and migration of cells. Additionally, atorvastatin upregulated PTGES2 expression by enhancing Sterol-regulatory element binding protein 2 (SREBP2)-mediated transcription. Knockdown of PTGES2 reversed the proliferation and migration ability enhanced by atorvastatin. Overall, our study reveals that a high fatty acid background is one of the possible conditions limiting the application of statins in HCC, under which statins promote the progression of HCC by enhancing SREBP2-mediated PTGES2 transcription.


Subject(s)
Carcinoma, Hepatocellular , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Liver Neoplasms , Humans , Mice , Animals , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Fatty Acids/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Arachidonic Acid/pharmacology , Prostaglandin-E Synthases/genetics , Atorvastatin/pharmacology , Cell Line, Tumor , Cholesterol , Cell Proliferation
11.
Sci Data ; 10(1): 906, 2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38104204

ABSTRACT

Cities are at the heart of climate change mitigation as they account for over 70% of global carbon emissions. However, cities vary in their energy systems and socioeconomic capacities to transition to renewable energy. To address this heterogeneity, this study proposes an Energy Transition Index (ETI) specifically designed for cities, and applies it to track the progress of energy transition in Chinese cities. The city-level ETI framework is based on the national ETI developed by the World Economic Forum (WEF) and comprises two sub-indexes: the Energy System Performance sub-index, which evaluates the current status of cities' energy systems in terms of energy transition, and the Transition Readiness sub-index, which assesses their socioeconomic capacity for future energy transition. The initial version of the dataset includes ETI and its sub-indexes for 282 Chinese cities from 2003 to 2019, with annual updates planned. The spatiotemporal data provided by the dataset facilitates research into the energy transition roadmap for different cities, which can help China achieve its energy transition goals.

13.
Int J Mol Sci ; 24(18)2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37762573

ABSTRACT

Potato Verticillium wilt, caused by Verticillium dahliae, is a serious soil-borne vascular disease, which restricts the sustainable development of the potato industry, and the pathogenic mechanism of the fungus is complex. Therefore, it is of great significance to explore the important pathogenic factors of V. dahliae to expand the understanding of its pathology. Protein kinase C (PKC) gene is located in the Ca2+ signaling pathway, which is highly conserved in filamentous fungi and involved in the regulation of a variety of biological processes. In the current study, the PKC gene in V. dahliae (VdPKC) was characterized, and its effects on the fungal pathogenicity and tolerance to fungicide stress were further studied. The results showed that the VdPKC positively regulated the growth and development, conidial germination, and production of V. dahliae, which was necessary for the fungus to achieve pathogenicity. It also affected the formation of melanin and microsclerotia and changed the adaptability of V. dahliae to different environmental stresses. In addition, VdPKC altered the tolerance of V. dahliae to different fungicides, which may be a potential target for polyoxin. Therefore, our results strongly suggest that VdPKC gene is necessary for the vegetative growth, stress response, and pathogenicity of V. dahliae.

14.
Adv Sci (Weinh) ; 10(27): e2304038, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37507832

ABSTRACT

High entropy oxides (HEOs), based on the incorporation of multiple-principal cations into the crystal lattice, offer the possibility to explore previously inaccessible oxide compositions and unconventional properties. Here it is demonstrated that despite the chemical complexity of HEOs external stimuli, such as epitaxial strain, can selectively stabilize certain magneto-electronic states. Epitaxial (Co0.2 Cr0.2 Fe0.2 Mn0.2 Ni0.2 )3 O4 -HEO thin films are grown in three different strain states: tensile, compressive, and relaxed. A unique coexistence of rocksalt and spinel-HEO phases, which are fully coherent with no detectable chemical segregation, is revealed by transmission electron microscopy. This dual-phase coexistence appears as a universal phenomenon in (Co0.2 Cr0.2 Fe0.2 Mn0.2 Ni0.2 )3 O4 epitaxial films. Prominent changes in the magnetic anisotropy and domain structure highlight the strain-induced bidirectional control of magnetic properties in HEOs. When the films are relaxed, their magnetization behavior is isotropic, similar to that of bulk materials. However, under tensile strain, the hardness of the out-of-plane (OOP) axis increases significantly. On the other hand, compressive straining results in an easy OOP magnetization and a maze-like magnetic domain structure, indicating the perpendicular magnetic anisotropy. Generally, this study emphasizes the adaptability of the high entropy design strategy, which, when combined with coherent strain engineering, opens additional prospects for fine-tuning properties in oxides.

15.
Biochim Biophys Acta Mol Basis Dis ; 1869(7): 166800, 2023 10.
Article in English | MEDLINE | ID: mdl-37423141

ABSTRACT

BACKGROUND & AIMS: Fatty acid translocase CD36 (CD36/FAT) is a widely expressed membrane protein with multiple immuno-metabolic functions. Genetic CD36 deficiency is associated with increased risk of metabolic dysfunction-associated fatty liver disease (MAFLD) in patients. Liver fibrosis severity mainly affects the prognosis in patients with MAFLD, but the role of hepatocyte CD36 in liver fibrosis of MAFLD remains unclear. METHODS: A high-fat high-cholesterol diet and a high-fat diet with high-fructose drinking water were used to induce nonalcoholic steatohepatitis (NASH) in hepatocyte-specific CD36 knockout (CD36LKO) and CD36flox/flox (LWT) mice. Human hepG2 cell line was used to investigate the role of CD36 in regulating Notch pathway in vitro. RESULTS: Compared to LWT mice, CD36LKO mice were susceptible to NASH diet-induced liver injury and fibrosis. The analysis of RNA-sequencing data revealed that Notch pathway was activated in CD36LKO mice. LY3039478, an inhibitor of γ-secretase, inhibited Notch1 protein S3 cleavage and Notch1 intracellular domain (N1ICD) production, alleviating liver injury and fibrosis in CD36LKO mice livers. Likewise, both LY3039478 and knockdown of Notch1 inhibited the CD36KO-induced increase of N1ICD production, causing the decrease of fibrogenic markers in CD36KO HepG2 cells. Mechanistically, CD36 formed a complex with Notch1 and γ-secretase in lipid rafts, and hence CD36 anchored Notch1 in lipid rafts domains and blocked Notch1/γ-secretase interaction, inhibiting γ-secretase-mediated cleavage of Notch1 and the production of N1ICD. CONCLUSIONS: Hepatocyte CD36 plays a key role in protecting mice from diet-induced liver injury and fibrosis, which may provide a potential therapeutic strategy for preventing liver fibrogenesis in MAFLD.


Subject(s)
CD36 Antigens , Diet , Hepatocytes , Liver Cirrhosis , Non-alcoholic Fatty Liver Disease , Peptide Fragments , Receptor, Notch1 , Animals , Mice , Amyloid Precursor Protein Secretases/antagonists & inhibitors , CD36 Antigens/deficiency , CD36 Antigens/genetics , CD36 Antigens/metabolism , Diet/adverse effects , Gene Deletion , Hep G2 Cells , Hepatocytes/metabolism , Liver Cirrhosis/etiology , Liver Cirrhosis/genetics , Liver Cirrhosis/prevention & control , Membrane Microdomains , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/prevention & control , Peptide Fragments/antagonists & inhibitors , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Phenotype , Receptor, Notch1/chemistry , Receptor, Notch1/metabolism , Signal Transduction , Humans
16.
Environ Sci Pollut Res Int ; 30(55): 117096-117109, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37284954

ABSTRACT

As China's rapid urbanization continues, uneven urban population spatial distribution (UPSD) has a profound impact on its CO2 emissions. To understand how UPSD shapes CO2 emissions in China, this study employs geographic detectors to analyze the spatial stratified heterogeneity patterns of urban CO2 emissions and explore the spatial individual and interactive effects of UPSD in 2005 and 2015. Results show that CO2 emissions increased significantly from 2005 to 2015, especially in developed cities and resource-based cities. The spatial individual effect of UPSD on spatial stratified heterogeneity pattern of CO2 emissions has gradually increased in the North Coast, South Coast, the Middle Yellow River, and the Middle Yangtze River. The interaction of UPSD and urban transportation infrastructure, urban economic development, and urban industrial structure plays a more important role on the North Coast and East Coast than in other city groups in 2005. In 2015, the interaction between UPSD and urban research and development was the traction of mitigating CO2 emissions in developed city groups, especially on the North Coast and East Coast. Moreover, the spatial interaction between the UPSD and urban industrial structure has gradually weakened in developed city groups, which means UPSD drives the prosperity of the service industry, thus contributing to the low-carbon development of Chinese cities.


Subject(s)
Carbon Dioxide , Urbanization , Humans , Carbon Dioxide/analysis , Urban Population , Cities , China , Economic Development , Carbon , Demography
17.
J Biol Chem ; 299(7): 104909, 2023 07.
Article in English | MEDLINE | ID: mdl-37307917

ABSTRACT

Sustainable TGF-ß1 signaling drives organ fibrogenesis. However, the cellular adaptation to maintain TGF-ß1 signaling remains unclear. In this study, we revealed that dietary folate restriction promoted the resolution of liver fibrosis in mice with nonalcoholic steatohepatitis. In activated hepatic stellate cells, folate shifted toward mitochondrial metabolism to sustain TGF-ß1 signaling. Mechanistically, nontargeted metabolomics screening identified that α-linolenic acid (ALA) is exhausted by mitochondrial folate metabolism in activated hepatic stellate cells. Knocking down serine hydroxymethyltransferase 2 increases the bioconversion of ALA to docosahexaenoic acid, which inhibits TGF-ß1 signaling. Finally, blocking mitochondrial folate metabolism promoted liver fibrosis resolution in nonalcoholic steatohepatitis mice. In conclusion, mitochondrial folate metabolism/ALA exhaustion/TGF-ßR1 reproduction is a feedforward signaling to sustain profibrotic TGF-ß1 signaling, and targeting mitochondrial folate metabolism is a promising strategy to enforce liver fibrosis resolution.


Subject(s)
Folic Acid , Liver Cirrhosis , Mitochondria , alpha-Linolenic Acid , Animals , Mice , alpha-Linolenic Acid/deficiency , alpha-Linolenic Acid/metabolism , Hepatic Stellate Cells/metabolism , Liver/cytology , Liver/metabolism , Liver/pathology , Liver Cirrhosis/complications , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/metabolism , Transforming Growth Factor beta1/metabolism , Folic Acid/metabolism , Mitochondria/metabolism , Folic Acid Deficiency/complications , Folic Acid Deficiency/metabolism , Signal Transduction , Feedback, Physiological
18.
Environ Sci Pollut Res Int ; 30(28): 72690-72709, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37178298

ABSTRACT

Low-carbon development requires joint efforts in terms of "carbon reduction" and "carbon sink increase." This study thus proposes a DICE-DSGE model for exploring the environmental and economic benefits of ocean carbon sinks and provides policy suggestions for marine economic development and carbon emission policy choices. The results are as follows: (1) while the economic benefits of heterogeneous technological shocks are apparent, the environmental benefits of carbon tax and carbon quota shocks are significant; (2) increasing the efficiency of ocean carbon sinks improves the environmental benefits of technological shocks as well as the output benefits of emission reduction tools, while increasing the share of marine output can improve both the economic benefits of technological shocks and the environmental benefits of emission reduction tools; and (3) ocean output proportion has the most considerable positive effect on social welfare, followed by marine total factor productivity (TFP). The correlation effect of ocean carbon sink efficiency is negative.


Subject(s)
Carbon Sequestration , Economic Development , Carbon , Carbon Dioxide/analysis , Oceans and Seas , China
19.
Autophagy ; 19(9): 2504-2519, 2023 09.
Article in English | MEDLINE | ID: mdl-37014234

ABSTRACT

Macroautophagy/autophagy plays a protective role in sepsis-induced liver injury. As a member of class B scavenger receptors, CD36 plays important roles in various disorders, such as atherosclerosis and fatty liver disease. Here we found that the expression of CD36 in hepatocytes was increased in patients and a mouse model with sepsis, accompanied by impaired autophagy flux. Furthermore, hepatocyte cd36 knockout (cd36-HKO) markedly improved liver injury and the impairment of autophagosome-lysosome fusion in lipopolysaccharide (LPS)-induced septic mice. Ubqln1 (ubiquilin 1) overexpression (OE) in hepatocyte blocked the protective effect of cd36-HKO on LPS-induced liver injury in mice. Mechanistically, with LPS stimulation, CD36 on the plasma membrane was depalmitoylated and distributed to the lysosome, where CD36 acted as a bridge molecule linking UBQLN1 to soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins and hence promoting the proteasomal degradation of SNARE proteins, resulting in fusion impairment. Overall, our data reveal that CD36 is essential for modulating the proteasomal degradation of autophagic SNARE proteins in a UBQLN1-dependent manner. Targeting CD36 in hepatocytes is effective for improving autophagic flux in sepsis and therefore represents a promising therapeutic strategy for clinical treatment of septic liver injury.Abbreviations: AAV8: adeno-associated virus 8; AOSC: acute obstructive suppurative cholangitis; ATP1A1: ATPase, Na+/K+ transporting, alpha 1 polypeptide; CASP3: caspase 3; CASP8: caspase 8; CCL2: chemokine (C-C motif) ligand 2; cd36-HKO: hepatocyte-specific cd36 knockout; Co-IP: co-immunoprecipitation; CQ: chloroquine; Cys: cysteine; GOT1: glutamic-oxaloacetic transaminase 1, soluble; GPT: glutamic-pyruvic transaminase, soluble; IL1B: interleukin 1 beta; IL6: interleukin 6; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LDH, lactate dehydrogenase; LPS: lipopolysaccharide; LYPLA1: lysophospholipase 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; OE: overexpression; qPCR: quantitative polymerase chain reaction; SNAP29: synaptosome associated protein 29; SNARE: soluble N-ethylmaleimide-sensitive factor attachment protein receptor; SQSTM1/p62: sequestosome 1; STX17: syntaxin 17; TNF: tumor necrosis factor; TRIM: tripartite motif-containing; UBA: ubiquitin-associated; UBL: ubiquitin-like; UBQLN: ubiquilin; VAMP8: vesicle associated membrane protein 8; WT: wild-type.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Sepsis , Animals , Mice , Adaptor Proteins, Signal Transducing/metabolism , Autophagy/physiology , Autophagy-Related Proteins/metabolism , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Hepatocytes/metabolism , Lipopolysaccharides/pharmacology , Lysosomes/metabolism , Sepsis/complications , Sepsis/metabolism , SNARE Proteins/metabolism , Soluble N-Ethylmaleimide-Sensitive Factor Attachment Proteins/metabolism , Soluble N-Ethylmaleimide-Sensitive Factor Attachment Proteins/pharmacology , Ubiquitins/metabolism
20.
Int J Mol Sci ; 24(4)2023 Feb 11.
Article in English | MEDLINE | ID: mdl-36835042

ABSTRACT

Verticillium dahliae is a soil-borne pathogenic fungus that causes Verticillium wilt in host plants, a particularly serious problem in potato cultivation. Several pathogenicity-related proteins play important roles in the host infection process, hence, identifying such proteins, especially those with unknown functions, will surely aid in understanding the mechanism responsible for the pathogenesis of the fungus. Here, tandem mass tag (TMT) was used to quantitatively analyze the differentially expressed proteins in V. dahliae during the infection of the susceptible potato cultivar "Favorita". Potato seedlings were infected with V. dahliae and incubated for 36 h, after which 181 proteins were found to be significantly upregulated. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses showed that most of these proteins were involved in early growth and cell wall degradation. The hypothetical, secretory protein with an unknown function, VDAG_07742, was significantly upregulated during infection. The functional analysis with knockout and complementation mutants revealed that the associated gene was not involved in mycelial growth, conidial production, or germination; however, the penetration ability and pathogenicity of VDAG_07742 deletion mutants were significantly reduced. Therefore, our results strongly indicate that VDAG_07742 is essential in the early stage of potato infection by V. dahliae.


Subject(s)
Ascomycota , Solanum tuberosum , Verticillium , Solanum tuberosum/microbiology , Virulence/genetics , Proteins , Plant Diseases/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...