Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 152
Filter
1.
Heliyon ; 10(11): e31250, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38828344

ABSTRACT

This study aimed to ascertain the delayed effects of various exposure temperatures on infectious diarrhea. We performed a Bayesian random-effects network meta-analysis to calculate relative risks (RR) with 95 % confidence intervals (95 % CI). The heterogeneity was analyzed by subgroup analysis. There were 25 cross-sectional studies totaling 6858735 patients included in this analysis, with 12 articles each investigating the effects of both hyperthermia and hypothermia. Results revealed that both high temperature (RRsingle = 1.22, 95%CI:1.04-1.44, RRcum = 2.96, 95%CI:1.60-5.48, P < 0.05) and low temperature (RRsingle = 1.17, 95%CI:1.02-1.37, RRcum = 2.19, 95%CI:1.33-3.64, P < 0.05) significantly increased the risk of infectious diarrhea, while high temperature caused greater. As-sociations with strengthening in bacillary dysentery were found for high temperatures (RRcum = 2.03, 95%CI:1.41-3.01, P < 0.05; RRsingle = 1.17, 95%CI:0.90-1.62, P > 0.05), while the statistical significance of low temperatures in lowering bacterial dysentery had vanished. This investigation examined that high temperature and low temperature were the conditions that posed the greatest risk for infectious diarrhea. This research offers fresh perspectives on preventing infectious diarrhea and will hopefully enlighten future studies on the impact of temperature management on infectious diarrhea.

2.
Molecules ; 29(9)2024 May 06.
Article in English | MEDLINE | ID: mdl-38731645

ABSTRACT

Ulcerative colitis (UC), as a chronic inflammatory disease, presents a global public health threat. However, the mechanism of Poria cocos (PC) in treating UC remains unclear. Here, LC-MS/MS was carried out to identify the components of PC. The protective effect of PC against UC was evaluated by disease activity index (DAI), colon length and histological analysis in dextran sulfate sodium (DSS)-induced UC mice. ELISA, qPCR, and Western blot tests were conducted to assess the inflammatory state. Western blotting and immunohistochemistry techniques were employed to evaluate the expression of tight junction proteins. The sequencing of 16S rRNA was utilized for the analysis of gut microbiota regulation. The results showed that a total of fifty-two nutrients and active components were identified in PC. After treatment, PC significantly alleviated UC-associated symptoms including body weight loss, shortened colon, an increase in DAI score, histopathologic lesions. PC also reduced the levels of inflammatory cytokines TNF-α, IL-6, and IL-1ß, as evidenced by the suppressed NF-κB pathway, restored the tight junction proteins ZO-1 and Claudin-1 in the colon, and promoted the diversity and abundance of beneficial gut microbiota. Collectively, these findings suggest that PC ameliorates colitis symptoms through the reduction in NF-κB signaling activation to mitigate inflammatory damage, thus repairing the intestinal barrier, and regulating the gut microbiota.


Subject(s)
Colitis, Ulcerative , Dextran Sulfate , Gastrointestinal Microbiome , NF-kappa B , Signal Transduction , Wolfiporia , Animals , Gastrointestinal Microbiome/drug effects , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , NF-kappa B/metabolism , Mice , Signal Transduction/drug effects , Wolfiporia/chemistry , Male , Disease Models, Animal , Cytokines/metabolism , Colon/pathology , Colon/metabolism , Colon/drug effects , Colon/microbiology , Tight Junction Proteins/metabolism , Mice, Inbred C57BL
3.
Proc Natl Acad Sci U S A ; 121(22): e2319880121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38768353

ABSTRACT

Elevated interstitial fluid pressure (IFP) within pathological tissues (e.g., tumors, obstructed kidneys, and cirrhotic livers) creates a significant hindrance to the transport of nanomedicine, ultimately impairing the therapeutic efficiency. Among these tissues, solid tumors present the most challenging scenario. While several strategies through reducing tumor IFP have been devised to enhance nanoparticle delivery, few approaches focus on modulating the intrinsic properties of nanoparticles to effectively counteract IFP during extravasation and penetration, which are precisely the stages obstructed by elevated IFP. Herein, we propose an innovative solution by engineering nanoparticles with a fusiform shape of high curvature, enabling efficient surmounting of IFP barriers during extravasation and penetration within tumor tissues. Through experimental and theoretical analyses, we demonstrate that the elongated nanoparticles with the highest mean curvature outperform spherical and rod-shaped counterparts against elevated IFP, leading to superior intratumoral accumulation and antitumor efficacy. Super-resolution microscopy and molecular dynamics simulations uncover the underlying mechanisms in which the high curvature contributes to diminished drag force in surmounting high-pressure differentials during extravasation. Simultaneously, the facilitated rotational movement augments the hopping frequency during penetration. This study effectively addresses the limitations posed by high-pressure impediments, uncovers the mutual interactions between the physical properties of NPs and their environment, and presents a promising avenue for advancing cancer treatment through nanomedicine.


Subject(s)
Drug Delivery Systems , Extracellular Fluid , Nanoparticles , Pressure , Nanoparticles/chemistry , Extracellular Fluid/metabolism , Animals , Drug Delivery Systems/methods , Mice , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Cell Line, Tumor , Extravasation of Diagnostic and Therapeutic Materials , Molecular Dynamics Simulation , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry
5.
Macromol Biosci ; : e2400003, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38597147

ABSTRACT

Articular cartilage defects pose a significant challenge due to the limited self-healing ability of cartilage. However, traditional techniques face limitations including autologous chondrocyte expansion issues. This study aims to investigate the effects of the polylactic acid-glycolic acid (PLGA) and collagen-surface modified polylactic acid-glycolic acid (CPLGA) microspheres loaded with tetramethylpyrazine (TMP) on two cell types and the regeneration potential of articular cartilage. CPLGA microspheres are prepared by Steglich reaction and characterized. They evaluated the effect of TMP-loaded microspheres on HUVECs (Human Umbilical Vein Endothelial Cells) and examined the compatibility of blank microspheres with BMSCs (Bone marrow mesenchymal stromal cells) and their potential to promote cartilage differentiation. Subcutaneous implant immune tests and cartilage defect treatment are conducted to assess biocompatibility and cartilage repair potential. The results highlight the efficacy of CPLGA microspheres in promoting tissue regeneration, attributed to improved hydrophilicity and collagen-induced mitigation of degradation. Under hypoxic conditions, both CPLGA and PLGA TMP-loaded microspheres exhibit inhibitory effects on HUVEC proliferation, migration, and angiogenesis. Notably, CPLGA microspheres show enhanced compatibility with BMSCs, facilitating chondrogenic differentiation. Moreover, the CPLGA microsphere-composite hydrogel exhibits potential for cartilage repair by modulating angiogenesis and promoting BMSC differentiation.

6.
Heliyon ; 10(8): e28801, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38638993

ABSTRACT

Objective: To investigate the association between air pollutants and the incidence of tuberculosis (TB) through a systematic review and meta-analysis, and to provide directions for future research and prevention of TB. Methods: A search was conducted for all literature related to the incidence of TB and air pollution in the database. We screened the retrieved articles and proceeded statistical analyses using random effects models to investigate the relationships between five air pollutants (PM2.5, PM10, SO2, NO2 and O3) and the incidence of TB. Results: The initial search identified 100 pieces of literature and 9 studies met the screening criteria after the screening. The single-day lagged risk ratio (RR) and 95% Confidence Intervals (CIs) for the combined effects estimates are as follows: PM2.5: 1.059 (0.966, 1.160); PM10: 1.000 (0.996, 1.004); SO2: 0.980 (0.954, 1.007); NO2: 1.011 (0.994, 1.027); O3: 0.994 (0.980,1.008). The cumulative lagged results for these five pollutants are listed like this: PM2.5: 1.095 (0.983, 1.219); PM10: 1.035 (1.006, 1.066); SO2: 0.964 (0.830, 1.121); NO2: 1.037 (1.010, 1.065); O3: 0.982 (0.954, 1.010). Conclusion: The single-day lag effects of PM2.5, PM10, SO2, NO2, and O3 are not statistically significantly relevant for the occurrence of TB. However, the cumulative lag results show that both PM10 and NO2 contribute to the prevalence of TB, while the statistical relationship between the cumulative lag effects of PM2.5, SO2, and O3 and the onset of TB remains unknown.

7.
Cancer Metab ; 12(1): 11, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594734

ABSTRACT

BACKGROUND: Diffuse midline gliomas (DMG), including diffuse intrinsic pontine gliomas (DIPGs), are a fatal form of brain cancer. These tumors often carry a driver mutation on histone H3 converting lysine 27 to methionine (H3K27M). DMG-H3K27M are characterized by altered metabolism and resistance to standard of care radiation (RT) but how the H3K27M mediates the metabolic response to radiation and consequent treatment resistance is uncertain. METHODS: We performed metabolomics on irradiated and untreated H3K27M isogenic DMG cell lines and observed an H3K27M-specific enrichment for purine synthesis pathways. We profiled the expression of purine synthesis enzymes in publicly available patient data and our models, quantified purine synthesis using stable isotope tracing, and characterized the in vitro and in vivo response to de novo and salvage purine synthesis inhibition in combination with RT. RESULTS: DMG-H3K27M cells activate purine metabolism in an H3K27M-specific fashion. In the absence of genotoxic treatment, H3K27M-expressing cells have higher relative activity of de novo synthesis and apparent lower activity of purine salvage demonstrated via stable isotope tracing of key metabolites in purine synthesis and by lower expression of hypoxanthine-guanine phosphoribosyltransferase (HGPRT), the rate-limiting enzyme of purine salvage into IMP and GMP. Inhibition of de novo guanylate synthesis radiosensitized DMG-H3K27M cells in vitro and in vivo. Irradiated H3K27M cells upregulated HGPRT expression and hypoxanthine-derived guanylate salvage but maintained high levels of guanine-derived salvage. Exogenous guanine supplementation decreased radiosensitization in cells treated with combination RT and de novo purine synthesis inhibition. Silencing HGPRT combined with RT markedly suppressed DMG-H3K27M tumor growth in vivo. CONCLUSIONS: Our results indicate that DMG-H3K27M cells rely on highly active purine synthesis, both from the de novo and salvage synthesis pathways. However, highly active salvage of free purine bases into mature guanylates can bypass inhibition of the de novo synthetic pathway. We conclude that inhibiting purine salvage may be a promising strategy to overcome treatment resistance in DMG-H3K27M tumors.

8.
FASEB J ; 38(6): e23559, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38502020

ABSTRACT

Articular cartilage injury is one of the most common diseases in orthopedic clinics. Following an articular cartilage injury, an inability to resist vascular invasion can result in cartilage calcification by newly formed blood vessels. This process ultimately leads to the loss of joint function, significantly impacting the patient's quality of life. As a result, developing anti-angiogenic methods to repair damaged cartilage has become a popular research topic. Despite this, tissue engineering, as an anti-angiogenic strategy in cartilage injury repair, has not yet been adequately investigated. This exhaustive literature review mainly focused on the process and mechanism of vascular invasion in articular cartilage injury repair and summarized the major regulatory factors and signaling pathways affecting angiogenesis in the process of cartilage injury. We aimed to discuss several potential methods for engineering cartilage repair with anti-angiogenic strategies. Three anti-angiogenic tissue engineering methods were identified, including administering angiogenesis inhibitors, applying scaffolds to manage angiogenesis, and utilizing in vitro bioreactors to enhance the therapeutic properties of cultured chondrocytes. The advantages and disadvantages of each strategy were also analyzed. By exploring these anti-angiogenic tissue engineering methods, we hope to provide guidance for researchers in related fields for future research and development in cartilage repair.


Subject(s)
Cartilage, Articular , Quality of Life , Humans , Immunotherapy , Angiogenesis Inhibitors , Calcification, Physiologic
9.
Biomater Res ; 28: 0006, 2024.
Article in English | MEDLINE | ID: mdl-38439927

ABSTRACT

Background: In the environment of cartilage injury, the activation of vascular endothelial cell (VEC), marked with excessive CD62E and reactive oxygen species (ROS), can affect the formation of hyaluronic cartilage. Therefore, we developed a CD62E- and ROS-responsive drug delivery system using E-selectin binding peptide, Thioketal, and silk fibroin (ETS) to achieve targeted delivery and controlled release of Clematis triterpenoid saponins (CS) against activated VEC, and thus promote cartilage regeneration. Methods: We prepared and characterized ETS/CS and verified their CD62E- and ROS-responsive properties in vitro. We investigated the effect and underlying mechanism of ETS/CS on inhibiting VEC activation and promoting chondrogenic differentiation of bone marrow stromal cells (BMSCs). We also analyzed the effect of ETS/CS on suppressing the activated VEC-macrophage inflammatory cascade in vitro. Additionally, we constructed a rat knee cartilage defect model and administered ETS/CS combined with BMSC-containing hydrogels. We detected the cartilage differentiation, the level of VEC activation and macrophage in the new tissue, and synovial tissue. Results: ETS/CS was able to interact with VEC and inhibit VEC activation through the carried CS. Coculture experiments verified ETS/CS promoted chondrogenic differentiation of BMSCs by inhibiting the activated VEC-induced inflammatory cascade of macrophages via OPA1-mediated mitochondrial homeostasis. In the rat knee cartilage defect model, ETS/CS reduced VEC activation, migration, angiogenesis in new tissues, inhibited macrophage infiltration and inflammation, promoted chondrogenic differentiation of BMSCs in the defective areas. Conclusions: CD62E- and ROS-responsive ETS/CS promoted cartilage repair by inhibiting VEC activation and macrophage inflammation and promoting BMSC chondrogenesis. Therefore, it is a promising therapeutic strategy to promote articular cartilage repair.

10.
BMC Cancer ; 24(1): 89, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38229014

ABSTRACT

BACKGROUND: Glioblastoma (GBM) is the most aggressive malignant central nervous system tumor with a poor prognosis.The malignant transformation of glioma cells via epithelial-mesenchymal transition (EMT) has been observed as a main obstacle for glioblastoma treatment. Epithelial membrane protein 3 (EMP3) is significantly associated with the malignancy of GBM and the prognosis of patients. Therefore, exploring the possible mechanisms by which EMP3 promotes the growth of GBM has important implications for the treatment of GBM. METHODS: We performed enrichment and correlation analysis in 5 single-cell RNA sequencing datasets. Differential expression of EMP3 in gliomas, Kaplan-Meier survival curves, diagnostic accuracy and prognostic prediction were analyzed by bioinformatics in the China Glioma Genome Atlas (CGGA) database and The Cancer Genome Atlas (TCGA) database. EMP3-silenced U87 and U251 cell lines were obtained by transient transfection with siRNA. The effect of EMP3 on glioblastoma proliferation was examined using the CCK-8 assay. Transwell migration assay and wound healing assay were used to assess the effect of EMP3 on glioblastoma migration. Finally, quantitative real-time polymerase chain reaction (qRT-PCR) and western blot were used to detect the mRNA and protein expression levels of EMT-related transcription factors and mesenchymal markers. RESULTS: EMP3 is a EMT associated gene in multiple types of malignant cancer and in high-grade glioblastoma. EMP3 is enriched in high-grade gliomas and isocitrate dehydrogenase (IDH) wild-type gliomas.EMP3 can be used as a specific biomarker for diagnosing glioma patients. It is also an independent prognostic factor for glioma patients' overall survival (OS). In addition, silencing EMP3 reduces the proliferation and migration of glioblastoma cells. Mechanistically, EMP3 enhances the malignant potential of tumor cells by promoting EMT. CONCLUSION: EMP3 promotes the proliferation and migration of GBM cells, and the mechanism may be related to EMP3 promoting the EMT process in GBM; EMP3 may be an independent prognostic factor in GBM.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Humans , Glioblastoma/pathology , Prognosis , Brain Neoplasms/pathology , Glioma/pathology , Epithelial-Mesenchymal Transition/genetics , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism
11.
Oncogene ; 43(11): 821-836, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38280941

ABSTRACT

Triple-negative breast cancer (TNBC) cells are in a more hypoxic and starved state than non-TNBC cells, which makes TNBC cells always maintain high autophagy levels. Emerging evidence has demonstrated that circular RNAs (circRNAs) are involved in the progress of tumorigenesis. However, the regulation and functions of autophagy-induced circRNAs in TNBC remain unclear. In our study, autophagy-responsive circRNA candidates in TNBC cells under amino acid starved were identified by RNA sequencing. The results showed that circEGFR expression was significantly upregulated in autophagic cells. Knockdown of circEGFR inhibited autophagy in TNBC cells, and circEGFR derived from exosomes induced autophagy in recipient cells in the tumor microenvironment. In vitro and in vivo functional assays identified circEGFR as an oncogenic circRNA in TNBC. Clinically, circEGFR was significantly upregulated in TNBC and was positively associated with lymph node metastasis. CircEGFR in plasma-derived exosomes was upregulated in breast cancer patients compared with healthy people. Mechanistically, circEGFR facilitated the translocation of Annexin A2 (ANXA2) toward the plasma membrane in TNBC cells, which led to the release of Transcription Factor EB (a transcription factor of autophagy-related proteins, TFEB) from ANXA2-TFEB complex, causing nuclear translocation of TFEB, thereby promoting autophagy in TNBC cells. Meanwhile, circEGFR acted as ceRNA by directly binding to miR-224-5p and inhibited the expression of miR-224-5p, which weakened the suppressive role of miR-224-5p/ATG13/ULK1 axis on autophagy. Overall, our study demonstrates the key role of circEGFR in autophagy, malignant progression, and metastasis of TNBC. These indicate circEGFR is a potential diagnosis biomarker and therapeutic target for TNBC.


Subject(s)
Autophagy-Related Proteins , MicroRNAs , Triple Negative Breast Neoplasms , Humans , MicroRNAs/genetics , RNA, Circular/genetics , Triple Negative Breast Neoplasms/pathology , Feedback , Cell Proliferation/genetics , Cell Line, Tumor , Autophagy/genetics , Transcription Factors/genetics , Gene Expression Regulation, Neoplastic , Tumor Microenvironment , Autophagy-Related Protein-1 Homolog/genetics , Intracellular Signaling Peptides and Proteins/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism
12.
Cancer Discov ; 14(1): 158-175, 2024 01 12.
Article in English | MEDLINE | ID: mdl-37902550

ABSTRACT

How cell metabolism regulates DNA repair is incompletely understood. Here, we define a GTP-mediated signaling cascade that links metabolism to DNA repair and has significant therapeutic implications. GTP, but not other nucleotides, regulates the activity of Rac1, a guanine nucleotide-binding protein, which promotes the dephosphorylation of serine 323 on Abl-interactor 1 (Abi-1) by protein phosphatase 5 (PP5). Dephosphorylated Abi-1, a protein previously not known to activate DNA repair, promotes nonhomologous end joining. In patients and mouse models of glioblastoma, Rac1 and dephosphorylated Abi-1 mediate DNA repair and resistance to standard-of-care genotoxic treatments. The GTP-Rac1-PP5-Abi-1 signaling axis is not limited to brain cancer, as GTP supplementation promotes DNA repair and Abi-1-S323 dephosphorylation in nonmalignant cells and protects mouse tissues from genotoxic insult. This unexpected ability of GTP to regulate DNA repair independently of deoxynucleotide pools has important implications for normal physiology and cancer treatment. SIGNIFICANCE: A newly described GTP-dependent signaling axis is an unexpected link between nucleotide metabolism and DNA repair. Disrupting this pathway can overcome cancer resistance to genotoxic therapy while augmenting it can mitigate genotoxic injury of normal tissues. This article is featured in Selected Articles from This Issue, p. 5.


Subject(s)
Glioblastoma , Signal Transduction , Humans , Mice , Animals , Signal Transduction/genetics , DNA Repair , DNA Damage , Guanosine Triphosphate
13.
Bioresour Technol ; 394: 130232, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38141881

ABSTRACT

Microalgae, known for rapid growth and lipid richness, hold potential in biofuels and high-value biomolecules. The symbiotic link with bacteria is crucial in large-scale open cultures. This study explores algal-bacterial interactions using a symbiotic model, evaluating acid-resistant Lactic acid bacteria (LAB), stress-resilient Bacillus subtilis and Bacillus licheniformis, and various Escherichia coli strains in the Aurantiochytrium sp. SW1 system. It was observed that E. coli SUC significantly enhanced the growth and lipid production of Aurantiochytrium sp. SW1 by increasing enzyme activity (NAD-IDH, NAD-ME, G6PDH) while maintaining sustained succinic acid release. Optimal co-culture conditions included temperature 28 °C, a 1:10 algae-to-bacteria ratio, and pH 8. Under these conditions, Aurantiochytrium sp. SW1 biomass increased 3.17-fold to 27.83 g/L, and total lipid content increased 2.63-fold to 4.87 g/L. These findings have implications for more efficient microalgal lipid production and large-scale cultivation.


Subject(s)
Microalgae , Escherichia coli , Succinic Acid , Biomass , Symbiosis , NAD , Lipids , Biofuels
14.
Cancers (Basel) ; 15(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38067360

ABSTRACT

Carcinoembryonic antigen (CEA) is more abundant in feces than in serum; however, evidence for the role of fecal CEA (FCEA) in the detection of colorectal cancer (CRC) is limited. We conducted a systematic review of studies that evaluated FCEA for the noninvasive detection and diagnosis of CRC. PubMed and Web of Science were searched for relevant studies published until 18 January 2023. Information on publication year, study design, country, study population characteristics, FCEA and serum CEA (SCEA) concentrations, and diagnostic performance was summarized. Two authors independently extracted data and assessed the risk of bias and applicability of each included study. Seven studies published between 1979 and 2021, all conducted in clinical settings and together involving 399 CRC patients and 889 controls, were identified. Significant differences in FCEA concentrations were observed between CRC and control groups in all studies. Methods for detecting FCEA varied, with the electronic chemiluminescence immunoassay (ECLIA) being used in the most recent studies. Reported sensitivities, specificities, and area under the curves of FCEA ranged from 50.0% to 85.7%, 73.0% to 100.0%, and 0.704 to 0.831, respectively. In direct comparisons, the diagnostic performance of FCEA was better than that of SCEA. The potential role of FCEA as a novel, noninvasive, easily measurable biomarker for the diagnosis of CRC requires further evaluation in screening settings.

15.
Int J Gynecol Pathol ; 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37922943

ABSTRACT

Mesonephric-like adenocarcinoma (MLA) of the ovary is a recently recognized, rare malignancy with aggressive clinical behavior, and is thought to originate from Mullerian epithelium with mesonephric transdifferentiation. Emerging evidence suggests that MLA may be classified as an endometriosis-associated neoplasm. The presence of a sarcomatous component within MLA is extremely rare, with common differential diagnoses including the spindle cell component of MLA, carcinosarcoma, as well as mixed Mullerian adenocarcinoma and adenosarcoma. Herein, we report a 58-year-old Chinese woman with bilateral ovarian solid-cystic masses. The left ovarian mass comprised a biphasic tumor with a predominantly high-grade sarcomatous component displaying heterologous mesenchymal differentiation, including liposarcoma, rhabdomyosarcoma and chondrosarcoma-like areas, with a null-type p53 expression. The epithelial component ranged from a bland appearance in areas diagnostic of adenosarcoma to a clearly invasive carcinoma, both with mesonephric-like phenotype, being negative for estrogen receptor, progesterone receptor, and Wilms' tumor 1, variably positive for paired box gene 8, GATA binding protein 3, and thyroid transcription factor 1, with a wild-type p53 expression. The differing p53 expression between the epithelial and sarcomatous elements mitigated against a diagnosis of carcinosarcoma. The right ovarian mass showed endometriosis with focal direct evidence of the development of malignancy within a benign endometriotic cyst, exhibiting the identical immunoprofile of MLA but originating as another malignancy. To the best of our knowledge, this case represents the first reported case of synchronous bilateral ovarian MLAs with separate origins, from high-grade Mullerian adenosarcoma and endometriosis respectively, which broadens the morphologic spectrum of MLA and provides further evidence supporting the Mullerian origin theory.

16.
Res Sq ; 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37790517

ABSTRACT

Background: Diffuse midline gliomas (DMG), including diffuse intrinsic pontine gliomas (DIPGs), are a fatal form of brain cancer. These tumors often carry a driver mutation on histone H3 converting lysine 27 to methionine (H3K27M). DMG-H3K27M are characterized by altered metabolism and resistance to standard of care radiation (RT), but how the H3K27M mediates the metabolic response to radiation and consequent treatment resistance is uncertain. Methods: We performed metabolomics on irradiated and untreated H3K27M isogenic DMG cell lines and observed an H3K27M-specific enrichment for purine synthesis pathways. We profiled the expression of purine synthesis enzymes in publicly available patient data and in our models, quantified purine synthetic flux using stable isotope tracing, and characterized the in vitro and in vivo response to de novo and salvage purine synthesis inhibition in combination with RT. Results: DMG-H3K27M cells activate purine metabolism in an H3K27M-specific fashion. In the absence of genotoxic treatment, H3K27M-expressing cells have higher relative activity of de novosynthesis and lower activity of purine salvage due to decreased expression of the purine salvage enzymes. Inhibition of de novo synthesis radiosensitized DMG-H3K27M cells in vitro and in vivo. Irradiated H3K27M cells adaptively upregulate purine salvage enzyme expression and pathway activity. Silencing the rate limiting enzyme in purine salvage, hypoxanthine guanine phosphoribosyl transferase (HGPRT) when combined with radiation markedly suppressed DMG-H3K27M tumor growth in vivo. Conclusions: H3K27M expressing cells rely on de novo purine synthesis but adaptively upregulate purine salvage in response to RT. Inhibiting purine salvage may help overcome treatment resistance in DMG-H3K27M tumors.

17.
Natl Sci Rev ; 10(10): nwad214, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37693123

ABSTRACT

Messenger RNA (mRNA) vaccine is revolutionizing the methodology of immunization in cancer. However, mRNA immunization is drastically limited by multistage biological barriers including poor lymphatic transport, rapid clearance, catalytic hydrolysis, insufficient cellular entry and endosome entrapment. Herein, we design a mRNA nanovaccine based on intelligent design to overcome these obstacles. Highly efficient nanovaccines are carried out with machine learning techniques from datasets of various nanocarriers, ensuring successful delivery of mRNA antigen and cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) to targets. It activates stimulator of interferon genes (STING), promotes mRNA-encoded antigen presentation and boosts antitumour immunity in vivo, thus inhibiting tumour growth and ensuring long-term survival of tumour-bearing mice. This work provides a feasible and safe strategy to facilitate STING agonist-synergized mRNA immunization, with great translational potential for enhancing cancer immunotherapy.

18.
Pharmaceutics ; 15(9)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37765173

ABSTRACT

The purpose of this study was to prepare large hollow particles (LHPs) by spray drying for pulmonary delivery of cyclosporine A (CsA), using L-Leucine (LEU) and hydroxypropyl methylcellulose (HPMC) as excipients and ammonium bicarbonate (AB) as a porogen. The prepared LHPs were spherical particles composed of both CsA and LEU on the surface and HPMC on the inner layer. The formulation of CsA-LEU-0.8HPMC-AB as typical LHPs showed excellent in vitro aerodynamic performance with a minimum mass median aerodynamic diameter (MMAD) of 1.15 µm. The solubility of CsA-LEU-0.8HPMC-AB was about 5.5-fold higher than that of raw CsA, and the dissolution of CsA-LEU-0.8HPMC-AB suggested that the drug was released within 1 h. The cell viability of the A549 cell line showed that CsA-LEU-0.8HPMC-AB was safe for delivering CsA to the lungs. In addition, inhalation administration of CsA-LEU-0.8HPMC-AB with the Cmax and AUC0-∞ increasing by about 2-fold and 2.8-fold compared with the oral administration of Neoral® could achieve therapeutic drug concentrations with lower systemic exposure and significantly improve the in vivo bioavailability of CsA. From these findings, the LHPs, with the advantage of avoiding alveolar macrophage clearance, could be a viable choice for delivering CsA by inhalation administration relative to oral administration.

19.
J Exp Clin Cancer Res ; 42(1): 249, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37752569

ABSTRACT

BACKGROUND: Hypoxia is one of most typical features in the tumor microenvironment of solid tumor and an inducer of endoplasmic reticulum (ER) stress, and HIF-1α functions as a key transcription factor regulator to promote tumor angiogenesis in the adaptive response to hypoxia. Increasing evidence has suggested that hypoxia plays an important regulatory role of ER homeostasis. We previously identified TMTC3 as an ER stress mediator under nutrient-deficiency condition in esophageal squamous cell carcinoma (ESCC), but the molecular mechanism in hypoxia is still unclear. METHODS: RNA sequencing data of TMTC3 knockdown cells and TCGA database were analyzed to determine the association of TMTC3 and hypoxia. Moreover, ChIP assay and dual-luciferase reporter assay were performed to detect the interaction of HIF-1α and TMTC3 promoter. In vitro and in vivo assays were used to investigate the function of TMTC3 in tumor angiogenesis. The molecular mechanism was determined using co-immunoprecipitation assays, immunofluorescence assays and western blot. The TMTC3 inhibitor was identified by high-throughput screening of FDA-approved drugs. The combination of TMTC3 inhibitor and cisplatin was conducted to confirm the efficiency in vitro and in vivo. RESULTS: The expression of TMTC3 was remarkably increased under hypoxia and regulated by HIF-1α. Knockdown of TMTC3 inhibited the capability of tumor angiogenesis and ROS production in ESCC. Mechanistically, TMTC3 promoted the production of GTP through interacting with IMPDH2 Bateman domain. The activity of Rho GTPase/STAT3, regulated by cellular GTP levels, decreased in TMTC3 knockdown cells, whereas reversed by IMPDH2 overexpression. Additionally, TMTC3 regulated the expression of VEGFA through Rho GTPase/STAT3 pathway. Allopurinol inhibited the expression of TMTC3 and further reduced the phosphorylation and activation of STAT3 signaling pathway in a dose-dependent manner in ESCC. Additionally, the combination of allopurinol and cisplatin significantly inhibited the cell viability in vitro and tumor growth in vivo, comparing with single drug treatment, respectively. CONCLUSIONS: Collectively, our study clarified the molecular mechanism of TMTC3 in regulating tumor angiogenesis and highlighted the potential therapeutic combination of TMTC3 inhibitor and cisplatin, which proposed a promising strategy for the treatment of ESCC.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/genetics , Allopurinol , Cisplatin/pharmacology , Esophageal Neoplasms/genetics , Guanosine Triphosphate , Tumor Microenvironment , Vascular Endothelial Growth Factor A , STAT3 Transcription Factor/genetics , Carrier Proteins , Membrane Proteins
20.
Mar Drugs ; 21(8)2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37623702

ABSTRACT

The post-translational modifications of conopeptides are the most complicated modifications to date and are well-known and closely related to the activity of conopeptides. The hydroxylation of proline in conopeptides affects folding, structure, and biological activity, and prolyl 4 hydroxylase has been characterized in Conus literatus. However, the hydroxylation machinery of proline in conopeptides is still unclear. In order to address the hydroxylation mechanism of proline in µ-PIIIA, three recombinant plasmids encoding different hybrid precursors of µ-PIIIA were constructed and crossly combined with protein disulfide isomerase, prolyl 4 hydroxylase, and glutaminyl cyclase in a continuous exchange cell-free protein system. The findings showed that prolyl 4 hydroxylase might recognize the propeptide of µ-PIIIA to achieve the hydroxylation of proline, while the cyclization of glutamate was also formed. Additionally, in Escherichia coli, the co-expression plasmid encoding prolyl 4 hydroxylase and the precursor of µ-PIIIA containing pro and mature regions were used to validate the continuous exchange cell-free protein system. Surprisingly, in addition to the two hydroxyproline residues and one pyroglutamyl residue, three disulfide bridges were formed using Trx as a fusion tag, and the yield of the fusion peptide was approximately 20 mg/L. The results of electrophysiology analysis indicated that the recombinant µ-PIIIA without C-terminal amidate inhibited the current of hNaV1.4 with a 939 nM IC50. Our work solved the issue that it was challenging to quickly generate post-translationally modified conopeptides in vitro. This is the first study to demonstrate that prolyl 4 hydroxylase catalyzes the proline hydroxylation through recognition in the propeptide of µ-PIIIA, and it will provide a new way for synthesizing multi-modified conopeptides with pharmacological activity.


Subject(s)
Proline , Protein Processing, Post-Translational , Hydroxylation , Prolyl Hydroxylases , Cell-Free System , Escherichia coli/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...