Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Korean J Physiol Pharmacol ; 26(6): 427-438, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36302618

ABSTRACT

Pyroptosis, a form of cell death associated with inflammation, is known to be involved in diabetic nephropathy (DN), and discoid domain receptor 1 (DDR1), an inflammatory regulatory protein, is reported to be associated with diabetes. However, the mechanism underlying DDR1 regulation and pyroptosis in DN remains unknown. We aimed to investigate the effect of DDR1 on renal tubular epithelial cell pyroptosis and the mechanism underlying DN. In this study, we used high glucose (HG)-treated HK-2 cells and rats with a single intraperitoneal injection of streptozotocin as DN models. Subsequently, the expression of pyroptosis-related proteins (cleaved caspase-1, GSDMD-N, Interleukin-1ß [IL-1ß], and interleukin-18 [IL-18]), DDR1, phosphorylated NF-κB (p-NF-κB), and NLR family pyrin domain-containing 3 (NLRP3) inflammasomes were determined through Western blotting. IL-1ß and IL-18 levels were determined using ELISA. The rate of pyroptosis was assessed by propidium iodide (PI) staining. The results revealed upregulated expression of pyroptosis-related proteins and increased concentration of IL-1ß and IL-18, accompanied by DDR1, p-NF-κB, and NLRP3 upregulation in DN rat kidney tissues and HG-treated HK-2 cells. Moreover, DDR1 knockdown in the background of HG treatment resulted in inhibited expression of pyroptosis-related proteins and attenuation of IL-1ß and IL-18 production and PI-positive cell frequency via the NF-κB/NLRP3 pathway in HK-2 cells. However, NLRP3 overexpression reversed the effect of DDR1 knockdown on pyroptosis. In conclusion, we demonstrated that DDR1 may be associated with pyroptosis, and DDR1 knockdown inhibited HG-induced renal tubular epithelial cell pyroptosis. The NF-κB/NLRP3 pathway is probably involved in the underlying mechanism of these findings.

2.
Biomed Pharmacother ; 115: 108909, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31071508

ABSTRACT

Ginsenoside metabolite compound-K (C-K), which is an active metabolite of ginsenoside in vivo, can produce anti-inflammatory affects by activating glucocorticoid receptors (GRs) to inhibit the expression of ß-arrestin2. Studies have shown that C-K can inhibit the function of immune cells including macrophage polarization and phagocytosis. However, the mechanism by which C-K regulates macrophage polarization is currently unclear. Toll-like receptors (TLRs) are the pattern recognition receptors on the membrane of immune cells, with TLR4 being especially important in polarization of macrophages. The Gαi-mediated activation of nuclear factor-κB (NF-κB) by TLR4 promotes inflammation and phagocytosis in macrophages by increasing the proportion of type I phenotypic macrophages (M1). Whether C-K inhibits the signal transduction of TLR4-Gαi-NF-κB and how that effects macrophage polarization regulation in murine models of RA is not reported. The coupling of G proteins with receptors is regulated by ß-arrestin2, but it has been unclear whether C-K modulates the TLR4 interaction with G proteins by inhibiting the expression of ß-arrestin2. To explore these questions, the collagen-induced arthritis (CIA) mouse model was employed, and mice were treated with C-K (112 mg/kg/day). The results depict that C-K treatment inhibits macrophage phagocytosis and reduces the proportion of M1. C-K decreases the overexpressed ß-arrestin2, Gαi, TLR4 and NF-κB in macrophages of CIA mice, while increasing the expression of Gαs. Furthermore, C-K promotes TLR4-Gαs coupling and inhibits TLR4-Gαi coupling through ß-arrestin2 regulation in macrophages, leading to a decrease in the proportion of M1 to M2 macrophages and improved outcomes in CIA mice.


Subject(s)
Arthritis, Experimental/drug therapy , Ginsenosides/therapeutic use , Macrophages, Peritoneal/drug effects , beta-Arrestin 2/antagonists & inhibitors , Animals , Arthritis, Experimental/immunology , Arthritis, Experimental/pathology , Cells, Cultured , Cytokines/blood , Foot Joints/drug effects , Foot Joints/immunology , Foot Joints/pathology , Macrophages, Peritoneal/immunology , Mice, Inbred DBA , Phagocytosis/drug effects , Spleen/drug effects , Spleen/immunology , Thymus Gland/drug effects , Thymus Gland/immunology , beta-Arrestin 2/genetics
3.
Environ Toxicol Pharmacol ; 68: 109-119, 2019 May.
Article in English | MEDLINE | ID: mdl-30884453

ABSTRACT

Di(2-ethylhexyl) phthalate (DEHP) is an environmental pollutant that is widely used in medical and consumer products. An epidemiological study has suggested that a large daily intake of DEHP from phthalate-contaminated food may be a risk factor for liver dysfunction. Long-term exposure to DEHP is associated with liver disease and exacerbates the progression of chronic liver injury. However, the effect of DEHP on hepatic fibrosis is rarely studied. In the present study, we sought to determine the effect of DEHP on carbon tetrachloride (CCl4)-induced liver fibrosis, and to further examine the molecular mechanisms. We found that DEHP exposure remarkably promoted liver inflammation, necrosis and fibrosis, and increased expression of the protein associated with liver inflammation and fibrogenesis, including α-SMA, COL-Ⅰ, COL-Ⅲ, TGF-ß1, P-Smad2, P-Smad3, P-p38 and P-p65. The similar trend was observed in the LX-2 cells. Furthermore, DEHP exposure induced oxidative stress and inflammatory cytokine production. Taken together, DEHP might play a fibrotic role in hepatic fibrosis rats and TGF-ß1-stimulated LX-2 cells in vitro which was related to TGF-ß1/Smad and p38MAPK/NF-κB signal pathway.


Subject(s)
Diethylhexyl Phthalate/toxicity , Liver Cirrhosis/chemically induced , Plasticizers/toxicity , Animals , Inflammation/chemically induced , Inflammation/metabolism , Inflammation/pathology , Liver/drug effects , Liver/metabolism , Liver/pathology , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Male , NF-kappa B/metabolism , Oxidative Stress/drug effects , Rats, Sprague-Dawley , Signal Transduction/drug effects , Smad Proteins/metabolism , Transforming Growth Factor beta1/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...